N=NDRUYA=NINE [nicrnational Journal of Soft Computing 4 (2): 56-59, 2009

ISSN: 1816-9503
PUBLISHING © Medwell Journals, 2009

Problem Oriented Software Engineering: Estimating Software
Package Reliability by Determining Error Rate

120.0. Ekabua, E.E. Williams and 20.A. Ofem
"Department of Computer Science, University of Zululand, South Africa
*Department of Maths, Statistics and Computer Science, University of Calabar, Nigeria

Abstract: Software packages play an important role in our lives. Products and services that affect people’s lives
must have quality attributes. Therefore, good quality software package is required and in order to determine
the quality of software package we need methods to measure it reliability. An interesting point here is that the
quality of software may change over time and software package 1s no exception. In the early days of computing,
software costs represented a small percentage of the overall cost of a computer-based system. Hence, a sizable
error in estimates of software cost had relatively little impact. Today, software is the most expensive element
in many computer-based systems. Therefore, steps taken to reduce the cost of software can make the difference
between the profit and loss of a company. So, by determiming the quality attributes of software, more precise,
predictable and repeatable control over the software development process and product will be achieved. We
propose a formal approach from the problem oriented software engineering point of view, for estimating the
reliability of a software paclkage by determining the error rate.

Key words: Software estimate, software error, software reliability, software change, software fault, software

package
INTRODUCTION reference to software, an error is usually a programmer
action or omission that results in a fault. While, a fault 1s
As an apparent statement, engineering 1is a software defect that causes a failure and a failure refers

considered as a step-wise problem solving activity that
vields a product (Krabbel et al., 1997). The we of
problem-oriented method to requirements engineering 1s
gradually becoming well established, mostly for software
mtensive systems. In recent years, the foundation of
problem-oriented method 1s being laid (Rapanotti ef ai.,
2004). Developing software has been viewed as a problem
and the solution as a machine that 1s, a program runming
in a computer that will ensure satisfaction of requirement
in the given problem world or environment. Because, the
requirement typically concerns properties and behaviours
that are located m the problem world at some distance
from its interface with the machine, requirements are
distinguished from specifications (Brier et al., 2004).

Amongst other concems of software engineers 1s on
how to handle change, which in most cases 1s inevitable.
Changes occur as a result of fixing bugs, or adding and
deleting requirement or functionality. Although, these are
not the only sources of change, but the need for change
1s evolving as software packages evolves.

Very often, the terms errors, faults and failures are
used interchangeable, but do have different meanings. In

to the unacceptable departure of a program operation from
program requirements. When measuring reliability, we are
usually measuring only defects found and defects fixed
(Ekabua and Adigun, 2008).

Software failures may result from errors, ambiguities,
oversights or misinterpretation of the specification that
the software 1s supposed to satisfy, carelessness or
incompetence I writing code, madequate testing,
incorrect or unexpected usage of the software or other
unforeseen problems (Hall et «l, 2002). While, it is
tempting to draw an analogy between software reliability
and hardware reliability, software and hardware have
basic differences that make them different in failure
mechanisms. Hardware faults are mostly physical faults,
while software faults are design faults, which are harder to
visualize, classify, detect and correct. Design faults are
closely related to fuzzy human factors and the design
process, which we don't have a solid understanding. In
hardware, design faults may also exist, but physical faults
usually dominate. In software, we can hardly find a strict
corresponding counterpart for manufacturing as hardware
manufacturing process, if the simple action of uploading

Corresponding Author: O.0. Ekabua, Department of Computer Science, University of Zululand, South Africa

Int. J. Soft Comput., 4 (2): 56-59, 2009

software modules into place does not count. Therefore,
the quality of software will not change once it is uploaded
mto the storage and start runming. Trying to achieve
higher reliability by simply duplicating the same software
modules will not work, because design faults can not be
masked off by voting (Michael, 1995).

Software packages are being rolled by the day into
the market, some evolving from the modification of a
previous package. Developing (Hall et al., 2005) a
software package is engineering in the traditional sense,
as 1t mvolves the creation of an artefact, which transforms
the physical world by meeting recognised needs. This
poses challenges that logic alone cannot address, but can
be met only by sharply focused specialisms practicing
highly developed normal design disciplines, in line with
those that characterise the established engineering
disciplines.

These being well known difficulties in established
branches of engineering, have sometimes led to harmful
dichotomy 1in approaches to software package
development. Some approaches are address as formal
concerns, while others as non-formal concerns-creating
difficulties in reconciling the two.

A key challenge therefore, 1s for software
engineers to develop methods on how to reconcile the
formal world of the machine and its software with the
non-formal real world. This is where Problem Oriented
Software Engineering (POSE) becomes necessary.
Unquestionably, engineering is a problem solving activity
(Ekabua and Adigun, 2008). Our focus is not only on
requirements engineering, where the problem-onented
software engineering has its origins, but more generally
with software engineering leading to the development of
a reliable software package. Along with other views
(Hall ef al., 2005), software engineering includes the
1dentification and clarification of system requirements, the
identification, structuring and analysis of the problem
world, the structuring and specification
hardware/software machine that can ensure satisfaction of
the requirements in the problem world, the creation of the
software product and the construction of formal
arguments, convincing to developers, customers, users
and other interested people, that the system will satisty its
real world requirements.

of a

RELATED WORK

A formal conceptual framework for software
development based on a problem-oriented perspective
that stretches from requirements engineering through to
program code was introduced. The research regarded
development steps as transformations, by which problems

57

are moved towards software solutions. The framework
follows, the form of a sequent calculus, which can
accommodate both formal and informal steps in
development (Rapanotti ef al., 2004).

Also, 1ssues of producing and managing the safety
reasoning involved in critical system development was
addressed through POSE. In particular, the study
provided some evidence on how POSE may contribute to
those elements of a safety case arguing requirements
validity and satisfaction, explicit context assumptions,
design judgment and rationale and safety risk
management and demonstrated the approach on a real
world example (Hall et al., 2005).

OUR PROBLEM FRAME

As earlier mention, our problem domain 18 on
estimating software package reliability. During the
development of a new software package, a step-wise
procedure is always put in place to eliminate earlier faults
or bugs found m the package. An often implemented
procedure is to allow the package to run on a set of well
known problems to see if any errors result. This can go on
for a fix time, while recording all resulting errors. After a
while, the testing stops and the package carefully examine
to determine the specific bugs responsible for the
observed errors. Changes will now be effected m the
package to remove these bugs.

Software reliability improvement is hard. The
difficulty of the problem stems from insufficient
understanding of software reliability and in general, the
characteristics of software. Until, now there is no good
way to conquer the complexity problem of software.
Complete testing of a moderately complex software
module is infeasible. Defect-free software product can not
be assured. Realistic constraints of time and budget
severely limits the effort put mto software reliability
improvement.

The POSE concept of problem requires a separation
of context, requirement and clarification, with explicit
descriptions of what 15 given, what 15 required and what
is designed. This enhances the traceability of artifacts and
their relation, as well as exposing all assumptions to
scrutiny and wvalidation. That all descriptions are
generated through problem transformation forces the
inclusion of an explicit justification that such assumptions
are realistic and reasonable (Hall ez al., 2005).

FORMAL PROBLEM FRAME
TRANSFORMATION

A proliferation of software reliability models have
emerged as people try to understand the characteristics of

Int. J. Soft Comput., 4 (2): 56-59, 2009

how and why, software fails and try to quantify software
reliability. Over 200 models have been developed since,
the early 1970s, but how to quantify software reliability
still remains largely unsolved. Interested readers may refer
to Ekabua ef al. (2007). As many models as there are and
many more emerging, none of the models can capture a
satisfying amount of the complexity of software;
constraints and assumptions have to be made for the
quantifying process. Therefore, there is no single model
that can be used in all situations. No model is complete or
even representative. One model may research well for a
set of certain software, but may be completely off track for
other kinds of problems.

Most software models contain the followng parts:
assumptions, factors and a mathematical fimection that
relates the reliability with the factors. The mathematical
fumetion 18 usually lngher order exponential or logarithmic.
Software modeling techniques cen be divided mto 2
subcategories: prediction modeling and estimation
modeling (Bleistein et al., 2004). Both kinds of modeling
techniques are based on observing and accumulating
failure data and analyzing with statistical inference.

Following our problem frame, it becomes possible to
visualise that not all the bugs in the package have been
eliminated and this introduces the great challenge of
estimating the error rate of the revised software package.

To mtroduce a formal modelling method to the above
scenario, we need to first suppose that the package
mnitially contains an unknown number, M, of bugs, wlich
herem is considered as bug 1, bug 2... bug M. Therefore,
we make three assumptions as follows: First, we would
like to assume that bug T will generate errors in
accordance to a Poisson process with an unknown rate A,
1=1...m. Then, for mstance, the number of errors due to
bug T that occur in any s units of operating time is
Poisson distributed with mean 4,3. Secondly, we will like
to also, assume that these Poisson processes caused by
bugs 1,1=1... M 1s independent. Thirdly, we assume the
package 18 to be run for t time umts with all resulting
errors being noted. At the end of this period, debugging
process takes place where a careful check of the package
15 made to determine the specific bugs that caused the
errors. These bugs are removed and the problem 1s then
to determine the error rate for the revised package.

If we let:

() = 0,1f bug,.i, has not caused an error by t 1)
1, otherwise
then
A = Y (D) (2)

58

is the error rate of the final package. The expectation of
the above can then be stated as:

E [A0]=31E[g (1]

= Sie 3)

We assume that each of the bugs discovered 1s
responsible for a certain mumber of errors. Therefore, we
denote M, (t) as the number of bugs that were responsible
for j errors, where, j=1. That is M, (t) caused exactly 1
error, M, (t) caused exactly 2 errors and so on with ; JM,
(t) equating the total number of errors that resulted. To
compute E [M,; (t)], we define Ti(t), where i>1, by the
relation:

0,bug i causes exactly lerror

= (4
WU 1, otherwise
Then,
M, ©)=>.1 (1) (5)
and so
E[M,®]= YEIL] (6)
= Ekite‘Ait (N

Using Eq. 2 and 5, we obtamn the intriguing result that:

E[A(D) —M,(t)/t] =0 (®)

From Eq. 6, we can possibly use M, (t)/t as an
estimate of A (t) requires us to consider how far apart
these two quantities tend to be. Therefore, we compute:

E?Lfe’l"‘t (1 —e) (10

i

Var(a(t)) = lezm(wl (t))=

Var(M, (1)) =3 Var(L (1)) = Yt ™ (1-Ate™) (1D

Int. J. Soft Comput., 4 (2): 56-59, 2009

Cov(A(t),Ml(t)) = COV{ZMI1 (t),ZI] (t)}

::EZEZCOv(Agm(tLIJt)) (12)
= ZXiCOV(\pi(t),Il(t)) (13)
==Y he e (14)

From Hq. 13 and 14, () and I; (t) are independent
variables when 1 #] because they refer to different
Poisson processes and

v ({1 =0 (15)

Therefore from Eq. 7, we obtain that

E[A(t)—Mlt(t)

_E[M, () +2M, ()]
tZ

3tz 0o

(17)

Following Eq. 17 and 5 and the identity, we have

1

:52(7@)2 et

1

(18)

E[M,(1)]

We can therefore, estimate the average square of the
difference between / (t) and

M,(t)
t

by the observed value of

(M, (t)+2M,{t))
tZ

CONCLUSION

The aim of the research reported here, is to bring both
non-formal and formal aspects of software package
development together in a step-wise formal mathematical
models, so as to estimate software package reliability by
determimng error rate. The formal approach 13 mtended to
provide a structure within, which the results of different
development activities can be combined and reconciled.

Essentially, the structure is the structure of the
progressive solution of a system development problem;

59

it is also, the structure of the argument that must
eventually justify the adequacy of the developed software
package. The model is itself formal, but it is designed to
accommodate both formal and mformal descriptions of
problem domams and requirements and arguments
justifymng claimed relationships between development
artifacts. Therefore, this study, has approached the
problem of estimating software package reliability by
determining error rate in software through formal
mathematical methods.

REFERENCES

Brier, J., L. Rapanotti and 1.G. Hall, 2004. Problem frames
for socio-technical systems: Predictability and
change. In: Proceedings of 1st Int. Workshop on
Applic. Adv. Problem Frames, [EEE CS Press,
pp: 21-25.

Bleistein, S., K. Cox and N. Verner, 2004. Problem Frames
Approach for E-business Systems. In: Cox, K., T. Hall
and T.. Rapanotti (Eds.). 1st Int. Workshop Adv.
Applic. Prob. Frames, Edinburgh, IEE., pp: 7-15.

Ekabua, 0.0., 0.0. Olugbara and M.O. Adigun, 2007. A
generic change propagation framework to enhance
service provisioning in a grid environment. Asian J.
Inform. Technol., 6 (10): 1015-1019. www.medwell
journals.com.

Ekabua, O.0. and M.O. Adigun, 2008. A framework and
assoclated models for determimning change impact
analysis during utility service provisioning in a grid
environment. Proceedings of the 2008 International
Conference on Software Engineering Research and
Practice (SERP). WORLDCOM, Las Vegas Nevada,
USA. www.world-academy-of-science.org.

Hall, J.G., M. Jackson, R.C. Laney, B. Nuseibeh and
I.. Rapanotti, 2002. Relating Software Requirements
and Architectures using Problem Frames. In 10th
Amniversary TEEE Joint Int. Conf. Requirements
Eng. (RE), Essen, Germany, TEEE. Comput. Soc.,
pp: 137-144.

Hall, .G, L. Rapanotti and M. Jackson, 2005. Problem
frame semantics for software development. 7.
Software and Syst. Modeling, 4 (2): 189-198.

Krabbel, A., I. Wetzel and H. Z ullighoven. 1997. On the
inevitable intertwining of analysis and design:
developmmg systems for complex cooperations. In
DIS: Proc. Conf. Designing Interactive Syst., New
York, USA, 1997. ACM Press, pp: 205-213.

Michael, R.L., 1995. Handbook of Software Reliability
Engineering. McGraw-Hill Publishing. ISBN: 0-07-
039400-8.

Rapanotty, L., I.G. Hall, M. Tacksonand B. Nuseibeh, 2004.
Architecture-driven problem decomposition. In 12th
IEEE Int. Conf. Requirements Eng. (RE 2004), IEEE
Comput. Soc., pp: 80-89.

