=D RUYA=NINE [nicrnational Journal of Soft Computing 4 (2): 60-67, 2009

ISSN: 1816-9503
PUBLISHING © Medwell Journals, 2009

A Dynamic Priority Scheduler for Advance Reservation in Grid Computing

'Ravin Ahuja, 'G. Gabrani and *Asok De
"Department of Computer Engineering, Delhi College of Engineering,
Bawana Road, New Delhi-110042, India
Department of Electronics and Communication Engineering,
Delhi College of Engineering, Bawana Road,
Ambedkar Institute of Technology, New Delhi, India

Abstract: In the grid technologies, it has become possible to allow many users or applications having multiple
jobs to seamlessly access and share huge and heterogeneous pools of computational data, storage and network
resources that are geographically distributed. This research is mto the domain of problems arising out of making
resources available not only time specific but also to cater to the needs of specific users with different priorities
at a particular time. Tn the present dynamic scenario when jobs (belonging to different users with different
priorities) are aplenty, the situation arising confronts a challenge regarding scheduling of the incoming jobs
after resolving their priorities and allocating them to the resources. These jobs can be allocated to the resources
either immediately (current reservation) or for some time in future (advance reservation). This study presents,
a Dynamic Priority Scheduler for Advance Reservation (DPSAR) in a space shared environment to coordinate
the resource sharing in distributed grid computing env rormments. The DPSAR aims at analyzing the multifarious
jobs and sequel to calibrating on the basis of priorities and protocels further reserving them to the respective
resources. In this study, we have simulated the DPSAR and its results are analyzed to measure the performance
issues. The results confirmed to an improved performance in terms of number of rejections and resource
utilization over an existing scheduler based on advance reservation technique (without priority) and pit falls

were found to be nominal.

Key words: Priority, scheduler, advance reservation, grid computing, gridlet

INTRODUCTION

Grid provides the ability to coordinate and share
various rtesources comnected through a network
(Foster and Kesselman, 1999, Foster ef al., 2002). The
current trends for the management of these resources in
the grid mostly employ variety of techniques viz. priority
queues, backfilling techniques (Karatza, 2000) and
methods like market based approach (Yeo and Buyya,
2004) such as those based on service level agreement and
advance reservation. In the present networking
technology and available bandwidth, the computing
resources are aggregated together to form a grid
computing environment. These computational resources
may provide free or chargeable services. The resources
may consist of one or more Processing Elements (PE) of
same or different technologies. They may also have
different hardware configurations that can vary from
vector super computers to diskless clients. The grid also,

has the capability to bring the computing power of
various computing resources to work together thereby
enhancing the overall computational power. This allows
the grid to provide solutions to computationally intensive
problems by giving an image of single system to the users
(L1 and Mamsh, 2005). The criterion for allocating
jobs (or Gridlets) of users to the free PE’s depends
upon the paying capacity and protocol of the user
(L1 and Marish, 2005; Buyya and Murshed, 2002). The
resources need to be monitored continuously to check
their availability so that jobs can be assigned to them
dynamically (Spooner et al., 2003). One of the major
challenges is the task of resource allocation i a dynamic
scenario when large number of users 1s jomnmng the grid
having numerous jobs to be performed.

To assign jobs to available resources, many
schedulers have been proposed m the literature. These
schedulers are based on various techmques such as
FCFS, Round Robin, shortest job first etc. However, these

Corresponding Author: Ravin Ahuja, Department of Computer Engineering, Delhi College of Engineering, Bawana Road,

New Delhi-110042, India

Int. J. Soft Comput., 4 (2): 60-67, 2009

schedulers do not guarantee resource allocation at a
specific timing i.e., the jobs scheduled by them are not
allocated resources in advance. Therefore, mn order to
execute jobs on demand at a specified time, a scheduling
system for Advance Reservation (AR) has been proposed
(Foster et al., 2001; Sulistio and Buyya, 2004). This
system consists of 2 components namely a scheduler and
an advance reservation module. The function of scheduler
is to schedule jobs on first come first basis and pass on
these jobs to the advance reservation module. The
advance reservation module does the reservation of jobs
to the available resources so that the jobs are executed at
a specified time in future. Thus, reservation ensures
execution of a given job at a possible agreed upon time
(between user and grid service provider) by a resource in
advance.

This scheduling system for Advance Reservation
(Sulistio and Buyya, 2004) has lmitations of not
complying to react to the dynamic behaviour of huge
number of users with distinet characteristics
requirements seeking grid for
computational requests. Also, as the jobs belonging to
different users have different priorities therefore different
jobs demand different treatment. These priorities are to be
resolved in a dynamic manner, making the job of
scheduling system extremely complex. Therefore, there is
a need of different scheduling system capable enough to
handle the priority of incoming jobs at the run time.

In order, to overcome the limitation in the scheduler

and

services on the

proposed in Sulistio and Buyya (2004), we m the study
have suggested a novel way of designing the first
component of scheduling system called the scheduler,
which can handle priorities and protocols of the jobs
dynamically. This component is referred to as Dynamic
Prionty Scheduler for Advance Reservation (DPSAR). In
this study, we have designed an algorithm for DPSAR and
used gridsim tool for simulation. The gridsim tool
provides a simulation of a real grid environment having
heterogeneous We
performance of DPSAR. Further, we have compared our
proposed scheduler DPSAR with the scheduler proposed
n Sulistio and Buyya (2004).

resources. have evaluated the

GRIDSIM SIMULATION ENVIRONMENT

Gridsim (Buyya and Murshed, 2002) 18 a sumulation
test bed that provides a distributed grid environment
constituting of heterogeneous computational resources.
This simulation toolkit defines java based entities for
simulation of resources, users, applications, schedulers
etc. These jobs can be configured as systems using either
space shared or time shared based techniques. In space

&1

Table 1: Indicating gridlet TD’s with the burst time as expected time for
which gridlet requires a PE and their respective arrival time Gridlet
with G capital not small

GI# Burst time Arrival

GJ1 5 0

GI2 7 2

GJl3 10 3

G4 5 4

Table 2: Gridlets being allocated to the PE’s showing the availability of
Processing Elements PE1 and PE2 with respect to the arrival time
of gridlets

PE1 GJ1 GJI3

PE2 GJ2 Gl4

2 9 14

shared technique, the jobs once scheduled are allocated
to available resources that may constitute one or more
PE’s (Processing element). When the PE to which job is
allocated 1s free, the job 13 executed. Whereas, in the time
shared techmique, the jobs to be executed on a PE are
given a time slot. The PE is freed for that time slot and the
given job is executed during that time slot.

In this study, authors have considered the space
shared techmique for the proposed DPSAR. In this
technique, whenever users joining the grid submit their
jobs also called gridlets, the jobs are allocated and
executed on a free PE. In case there 1s no free PE available,
the job 18 placed in the waiting queue called resource
queue. As soon as a job on a given PE finishes its
execution, an internal event is generated to signify the
completion of the job. In response to this, simulator frees
the PE allocated to it and finds 1if there 1s any other job
waiting in the resource queue. The pending jobs are then
selected from the resource queue and are assigned free
PEs based the job allocation policy. In order to
understand the working of space shared technique, let us
consider a grid scenario, where there are four gridlets and
two number of PEs.

In Table 1, GJ# represents the Gridlet (Job) ID, Burst
time represents total time (in ms) for which user requires
PE and arrival time shows the time (in ms), at which job of
a user arrives in a grid system.

Table 2 shows that GI#1 is allocated to the PE] as it
1s free at that time. At 2 ms, GI#2 arrives and gets the
processor PE2 as it 1s also free. Now gridlets GI#3 and
GT#4 arrive at 3 and 4 ms, respectively. Neither of these
gridlets will be allocated to any PE as none of the PE 1s
free. GJ#1 fimshes at 5 ms and GJ#2 fimshes at 9 ms. Now
at 5 ms, PE1 is free and will be allocated to GJ#3 and at
9 ms, PE2 1s free and will be allocated to GT#4. Therefore,
all the Jobs will finish their execution within 15 ms
according to space shared technique.

The jobs being executed can be allocated resources
in advance for their execution in future at a specific time
using advance reservation. Authors have considered the

Int. J. Soft Comput., 4 (2): 60-67, 2009

scheduling of jobs using priority as the policy criteria with
advance reservation mechanism followed by execution
based on space shared technique. Advance reservation
can be used to support co-scheduling, especially among
diverse types of grid resources. In advance, reservation
there is a set of resources with availability limited to a
specific user or users, at a specific start time and for a
specified duration

DYNAMIC PRIORITY SCHEDULING SYSTEM
FOR ADVANCE RESERVATION

The dynamic priority scheduling system for advance
reservation mainly consists of two components viz.
DPSAR and the Advance Reservation Module (ARM).
The DPSAR does the scheduling of jobs by resolving
jobs priorities dynamically, where as Advance
Reservation Module (ARM) takes care of reservation of
jobs that are scheduled by DPSAR. The proposed
scheduler DPSAR basically acts as a prelude to the
ARM as shown in Fig. 1.

In the given grid environment, a number of users
having different priorities and protocols can jom the
grid. The priority of a user 1s derived from its paying
capacity and ranking protocol. Each user with different
priority submits one or multiple jobs. These jobs also,
have a priority, which 1s based on two parameters, namely
the job’s length and the priority of user to which it
belongs to.

Whenever, a user enters grid, it is enlisted by the
DPSAR 1n a queue called user list. The users from the
User list are sorted based on their priority and are placed
in a queue called user queue. Thereafter, jobs that are
generated by various users are ordered on the basis of
their lengths and are placed in another queue named
gridlet list. The jobs are now to be prioritized again. The
DPSAR prioritizes them by using a gridlet sorting policy
and Dynamic Priority Resolution (DPR) technique. The
sorting policy decides on the number of jobs of each user
to be prioritized and to be sent for reservation. Thus, the
sorting policy ensures that jobs of various users are
entertained in a way so as to avoid starvation among the
jobs. On the other hand, the DPR techmique 1s used to
resolve the priority of jobs by considering the parameters
associated with jobs priority. The DPR therefore, is
consequential in determimng the priority of mecoming jobs
having higher user priority and higher job priority based
on the job length. The DPSAR finally stores prioritized
jobs in a queue called Gnidlet queue. The jobs thus,
scheduled by DPSAR are submitted to ARM.

ARM maintains a list of scheduled jobs and reserves
them. ARM then allocates resources to the reserved jobs
to be executed at a specific time n future (referred to as

62

Fig. 1: DPSAR scheduler

start execution time). ARM, while reserving jobs also
anticipates the tentative computational time required to
execute the job so as to reserve forthcoming jobs. The
jobs are executed based on space shared technique. In
space shared technique, jobs are executed only if there is
a free PE available otherwise they are placed in a resource
queue maintained by ARM. Whenever, a job finishes its
execution, the corresponding PE is freed and is allocated
to the next pending job in the resource queue. For this an
internal process of ARM continuously checks the
resource queue, selects the next pending job and allocates
it to a free PE.

DPSAR IN DETAITL

DPSAR state diagram: The details of DPSAR state
diagram are shown in Fig. 2. Tt shows, the various state
transitions the DPSAR goes through starting from the
initial state to the request state. The initial state
represents the users joining the grid, whereas in the
Request state, the jobs, which are prioritized and
scheduled by DPSAR are dispatched to ARM for
reservation.

After the users have jomed the grid, DPSAR goes
through four states. In the first state, users are sorted
according to their priorities. In the second state, the jobs
of each user are sorted based on the lengths of jobs. In
the third state, the jobs of various users are sorted in
accordance with the job’s priority based on job length
and on priority of the user to which the jobs belong to.
This 1s done by DPR technique as well as Gridlet Sorting
Policy (GSP). The GSP based on a predefined value
decides that how many jobs of a given user are to be
scheduled and subsequently sent for reservation. Finally,
1n the last state, jobs are placed in a queue called Gridlet
queue from where they are sent to ARM.

Algorithm for DPSAR: The algorithm followed by
DPSAR can be broadly divided into two phases namely
user Priority phase and Gridlet priority phase. The first
phase deals with the user priority whereas the second
phase takes care of job priority. Before explaming, the
algorithm 1n detail, the following terminologies are first
explained.

Various terminologies
User: Consumer or application seeking grid services.

User list: A list of users seeking grid services.

Int. J. Soft Comput., 4 (2): 60-67, 2009

Fig. 2: State diagram for dynamic priority scheduler for
advance reservation

User priority: Priority of the user according to its paying
capacity and ranking protocol. Tt is represented by an
mteger value.

User sorting policy: Tt is policy used to sort the users.
Gridlet: JTob of a user.
Gridletlist: A list of Gridlets.

Gridlet priority: Priority of the job, which 1s represented
by an integer value. It can assume different values in
different stages of the algorithm depending on either the
job length or on both job length and user priority.
Gridlet sorting policy: It 15 the policy to sort the
Gridlets T.

Significant Difference (SD): A predefined parameter that
15 based on difference between priorities of two jobs
competing for resource reservation.

DPSAR algorithm: The algorithm for DPSAR has
following two phases (Fig. 3):

User priority phase: As already mentioned, users having
different priorities can join the grid. These users can have
one or multiple jobs. In this phase, first the users are
sorted and then the jobs of each user are sorted. The
users are sorted in decreasing order of their priorities
using user sorting policy. If the users have equal priorities
they are arranged on first come first basis else mnsertion
sort technique is used.

Once, the users have been sorted, jobs of each user
are sorted on the basis of their lengths. The jobs are
sorted using insertion sort technique. The jobs thus,
sorted are placed in the Gridlet List. This technique is
used as it saves time and therefore is more efficient. This
15 due to the fact that insertion sort has complexity of
O (n), which is comparatively less than the time

63

complexities O (nlog(n)) and O (n’) of other sorting
methods in the best or worst case, respectively.

Gridlet priority phase: In this phase, jobs already sorted
in User priority phase are further prioritized based on
two criteria. This criterion can either be User Priority or
both job length and UserPriority (referred to as User
High Prionity (UHP) phase and User Job Priority
(UJP) phase, respectively). DPR technique decides
whether jobs will be sorted in UHP or UJP phase
depending on the difference in priority of the jobs (that 1s
user priority).

DPR technique takes two users at a time that are
competing for reservation and compares their
UserPriority. If the difference between user priority 1s
larger than significant difference SD, only the jobs
belonging to the higher priority user are sorted. The jobs
belonging to lower priority user are queued up. These
jobs are treated as pending jobs, which will further
participate in the next sorting process m the user priority
phase. Out of these sorted jobs of a higher priority user,
only a predefined number of jobs are considered for
reservation (as decided by pre-defined function) and rest
are discarded. This is referred to as UHP phase.

Whereas, if the difference between the UserPriority of
the two users competing for reservation is less than a
significant difference SD, the priority of jobs is evaluated
on the basis of their job length and User Priority. The jobs
are sorted as the jobs keep arriving, the sorting process is
repeated and the pending jobs of lower priority users are
allowed to participate again and hence, they are prevented
from gettng starved. This phase 13 known user Job
priority phase.

GRIDLET SORTING POLICY

The sorting technique used to sort the jobs in the
above phases is decided by GSP. The GSP uses shortest
first job techmique for sorting the jobs of various users.
This policy also uses a pre-defined function in UHP or
UITP phase to decide as to how many jobs of high priority
user are to be considered for reservation. The policy
prevents all the jobs of high prionty user from getting
entertained and therefore avoids starvation of jobs of low
priority users. The policy takes this decision on the basis
of a pre-defined value.

Pseudo code for DPSAR
. Start

* Create a user list and add users to this list as users
arrive and join the grid

Int. J. Soft Comput., 4 (2): 60-67, 2009

Gl Gl,,

Gl,, |User I °GL,

Gl,, Gl,,

Gy G2,

G2y |User2) | G2

T1 G2, G2,

P

G2, G2,

G2, G3,

G2, G3,

G2, G3,

G2, G3,

Ga, G,

Ux —P GN, GN,,

\ GNy, | Usern | GNy

GN, GN,
Sorted user User's Gridlet User's sorted
queue quene Gridlet queue

Fig. 3: DPSAR block diagram

¢ Sort the users in the user list based on assigned user
priority using insertion sort following user sorting
policy

* Create a Gridlethst and insert Gridlets in this list
according to their user priority such that all gridlets
of each user are placed in a sequence

¢ Sort the Gridlets of various users joined

* Define a Dynamic Priority Resolution (DPR) and 1s
calculated at runtime by using

DPR = User[i]. priority-User [I+1]. priority

¢ Compare DPR with SD, which is significant difference

between user priority.
If (DPR>SD)

User High Priority (UHP) phase: Sort the
Gridlets vs Gridlets of each user according to
shortest order and place into a user’s gridlet
queue. Consider only N number (decided by a
predefined function) of shortest jobs of higher
priority user to be sent for reservation schedule
as decided by GSP.

else
User Job Priority (UJP) phase: Sort the Gridlets
of users according to GSP, taking into account
the user priority of both the users, which being
compared, are placed into a queue. This leads to
gridlets from both the users in the gridlet list.

¢ If (new user)
Gotostep 2
¢ If (new Gridlet)
Gotostep 4
Stop

Priority = fn(SD)
SD=x;

&4

=)

UHP: User High Priority Phase
TIJP: User Job Priority Phase

DPSAR gives the best results when user priority is
uniformly distributed among the users in the User Lst
Generally, SD is assigned as priority level/2. When a new
user joms the grid, an event triggers scheduler thread
jumps to step 7 or 8 depending upon the situations. This
algorithm 1s explained using an example in the Fig. 3
having three users UJ1, U2 and U3 with priority 9, 3 and 2,
respectively. Ul has 3 jobs viz. Gl, Gl and Gl;; with
length L., 1., and L, respectively. Tt has been assumed
that =L, if i>). Similarly, users U2 and U3 have four jobs
each namely G2, G2, G2, G2, and G3,, G3, G3,; G3..
In the second queue, (users sorted Gridlet queue), the
jobs are sorted internally for each user. Thereafter, DPR
compares SD for jobs competing and accordingly passes
it to UJHP or UJP phase, which constitutes the final queue
called Gridlet queue.

Let us assume for example, user Ul has very high
user priority as compared to user priority of U2, This
means that the difference between user priority of two
users Ul and U2 is larger than pre-defined value of SD
(compared by DPR technique). Therefore, DPSAR enters
UHP phase (otherwise it would have entered UJP phase).
The jobs of Ul are now taken and sorted on the shortest
job first basis whereas jobs of U2 are queued. According
to gridlet, sorting policy only three jobs (a pre-defined
value) of a higher priority user are at most entertained n
order to prevent jobs of users of low user priority from
starvation. Therefore, jobs G1; Gl; and Gl ;are scheduled
for reservation and rest are discarded.

After the jobs of U1 having been considered, DPSAR
now takes jobs of next two users namely U2 and U3. The
priority between jobs of U2 and U3 1s resolved by
comparing the difference between user priority of U2 and
User priority of U3. Let, us assume for instance that this
difference is less than SD, therefore DPSAR enters UJIP
phase. As the user priority of U2 and U3 1s comparable,

Int. J. Soft Comput., 4 (2): 60-67, 2009

the priority between jobs of two users is again resolved
on the basis of 2 parameters (instead of one parameter as
in UHP) namely their user priority and job length. In this
case, jobs of both the users U2 and U3 are considered.
The jobs thus, prioritized are placed in Gridlet queue in
accordance with the descending order of their priorities.
The number of jobs of each user to be entertamned and
scheduled further for reservation is decided by GSP.
Hence, the jobs G2, G3,, G2, G3,; G2,,G3,,G2,,and G3,
of 172 and U3, respectively are scheduled for reservation.

The gridlets thus, scheduled are reserved by ARM to
be executed m future at a specific time. The ARM ensures
that the scheduled jobs are allocated resources in
advance. Tt is to be mentioned here that number of jobs to
be considered for reservation may vary and 13 decided by
the pre-defined function used by the reservation policy of
ARM.

The ARM reservation policy decides the percentage
of reservation for imcoming jobs out of the total jobs of
various users. The jobs can either be reserved
immediately or in future as decided by the ARM
reservation policy. The scheduled jobs are expected to
start their execution on the resources reserved for them by
ARM policy. But in practice it may happen that the
execution of jobs gets delayed thereby impacting the
performance of DPSAR. The effect of this delay on
various performance parameters 1s studied by conducting
various simulation experiments.

SIMULATION ENVIRONMENT AND RESULTS

The algorithms for comparison (the proposed DPSAR
algorithm and simple Advance Reservation Without
Prionity (proposed by Anthony et al. (2004), referred to as
ARWP)) are implemented on a machine based on Pentium
1.6 GHz with 80 GB HDD and RAM of 512 MB on
Microsoft Windows XP. The experiments are performed
on a simulated grid environment provided by grid sim.
The performance model and simulation environment used
here 1s similar to that used.

The simulation environment consists of 5 resources.
These 5 resources have 47 PE’s in total having different
processing capabilities in terms of Millions Instructions
Per Second (MIPS). However, PE’s belonging to a
particular resource have the same processing capability.
For example, one of the resources may have 5 PE’s with
the processing capability of 417 MIPS. Further, it 1s
assumed that there are 50 users with 100 jobs each. These
5000 jobs may join the grid simultaneously and recuest for
reserving the resource. As the number of resources is far
less than the number of jobs requesting them, it is
umperative that not all the jobs will get the resource

65

reservation. The percentage of jobs getting advance
reservation 18 therefore varied (from 0-30%) in order to
study its impact on various performance parameters
{(discussed below), such as like average waiting time,
average offset, number of rejections and resource
utilization.

The parameters used for performance comparison n
thus study are explamed as follows:

Average waiting time: Average time for which a gridlet
waits in order to get a resource using advance reservation
technique.

Average offset time: Average difference between time at
which a gridlet has been scheduled to start its execution
and the time at which it actually starts its execution on an
allocated resource.

Number of rejections: Number of gndlets getting
discarded for not getting reservation on any resource.

Resource utilization: Measure of percentage of resource
utilization when gridlets are rumming on a particular
resource.

All the performance measures are probabilistic in
nature, so value of these variables are taken by repeating
the experiments several times. These values are then
averaged over as many times as the experiments are
performed. Tn this study, we have repeated the simulation
experiments 300 times. All these simulations were carried
out in gridsim using eclipse 3.2.

The various performance metrices of DPSAR that
have been evaluated are now discussed below:

Average waiting time: Figure 4 shows graphical analysis
between average waiting time and percentage of jobs
reserved in advance for both DPSAR and ARWP
algorithms. Tt is observed that as the percentage of job
reservation 18 increased, the average waiting time
increases for both DPSAR and ARWP. Since, the jobs are
reserved for some specific time in future, it is obvious that
average waiting time will increase with percentage of job
reservation. It 1s noticed that when the percentage of
reservation is varied from 0% (immediate reservation i.e.
reservation starting with current time as start time) to 10%
there is a sharp rise in average waiting time whereas this
rise 1s not as sharp with the further increase in percentage
of reservation. With the use of DPSAR. scheduler, the
average waiting time increases very insignificantly as
compared to the ARWP. This is due to the fact that
DPSAR takes priority of the gridlets into consideration
before allocating resources.

Int. J. Soft Comput., 4 (2): 60-67, 2009

3 DPSAR
O ARWP

=

0

T
10 20
Jobs using AR (%)

30

Fig. 4: Graph between average waiting tine and

percentage of jobs using DPSAR and ARWP
30017

O DPSAR
0 ARWP

@ =
S S

._.
2
<

Average offset time (min)

501

ﬁmm

Jobs using AR (%)

100

Fig. 5. Graph between average offset time and percentage
of jobs reserved using DPSAR and ARWP

Average offset time: Graphical analysis between average
offset time and percentage of jobs using advance
reservation 18 demonstrated m the Fig. 5. As the
percentage of reservation 1s increased, the average offset
time decreases i both DPSAR and ARWP. It is evident,
from the results that the performance of DPSAR is better
than ARWP as it has lower average offset time indicating
better accuracy as the gap between guaranteed start time
(while, resrving) and actual execution time has decreased.

66

4958+
3 DPSAR

O ARWP
4940

4930+

.
-
[
2

Total number of rejection
.
=
i

4890

4880

4870

10 20
Joba using AR (%)

30

Fig. 6: Graph between total number of rejections and

percentage of jobs reserved using DPSAR and
ARWP

100 O DPSAR
O ARWP

90

Resource utilization (%4)
N W s W O W oo
=~ [=] [=] = (=] (=] =
1 'l L L L i L

—
(=]
1

[=]

10 20
Jobs using AR (%)

30

Fig. 7. Graph between percentage utilization and
percentage of jobs reserved using DPSAR and
ARWP

It 1s observed that DPSAR not only reduces the average
offset time, but also considers the selected preferential
jobs for reservation.

Number of rejections: Figure 6 depicts an analysis
between number of rejections and the percentage of jobs
using advance reservation. As more and more jobs seek
reservatiory, the number of rejections goes up. As seen
from the figure, the DPSAR gives improved results over

Int. J. Soft Comput., 4 (2): 60-67, 2009

ARWP. This is due to the reason that the shortest jobs of
higher priority users are entertained first by DPSAR.
Rather it also handles, the job priorities dynamaically at the
run time.

Resource utilization: The graph in Fig. 7 shows variation
in percentage of resource utilization with respect to the
change in percentage of jobs using advance reservation
in both DPSAR and ARWP. The resource utilization
drops in both the techniques. The resource utilization in
DPSAR shows better results when compared to ARWP,
as the DPSAR schedules jobs in shortest job first order.
DPSAR not only provides committed reservations to the
jobs but also takes care of job priorities. Therefore,
DPSAR ascertamns job reservation to more deserving jobs
thereby enhancing the over all utility of resources.

CONCLUSION

The DPSAR proposed in this study does job
scheduling and allocation on demand. This allocation is
done for a specified time in future. The job allocation
takes place only after the dynamic analysis of jobs at run
time 1n terms of their priorities and job lengths. DPSAR by
incorporating a pre-defined function also limits the
mumber of jobs of each user to be reserved. This
therefore, helps to reduce the problem of starvation for
jobs belonging to low priority users.

The performance of DPSAR has also been evaluated
by conducting several experiments on a simulation tool
called Gridsim. We have also compared the performance
of DPSAR with an existing scheduler ARWP (it does not
have feature of dynamic priority resolution). Tt is also,
observed that the average offset time m DPSAR has
reduced as compared to ARWP. Further, the number of
rejections of jobs that do not get reservations also drops
in case of DPSAR when compared to ARWP. Tn DPSAR
the resource utilization drops at 10% reservation, but
shows slight improvement at 20 and 30%, which 1s almost
at par with ARWP. It is also observed that the average
waiting time experiences an upward trend in DPSAR but
that is not very significant.

Further, it 1s to be mentioned that the proposed
DPSAR uses shortest job first techmque for sorting user
jobs. However, DPSAR can also be designed based on

&7

other techniques like FCFS or longest job first. Also, the
proposed DPSAR reserves the scheduled jobs to different
resources m a random marmer. A different scheme of
allocation of resources to the jobs can be devised and its
effect on the performance of DPSAR can be studied as a
further extension of this study.

REFERENCES

Buyya, R. and M. Murshed, 2002. Grid Sim: A toolkit for
modeling and simulation of distributed resource
management and scheduling for grnid computing.
Concurrency and computing. Practice and Experience,
14 (13-15): 1175-1220.

Foster, 1. and C. Kesselman, 1999. The Grid: Blueprint for
a future computing infrastructure. San mateo: Morgan
Kauf-mann Publishers.

Foster, I, C. Kesselman and S. Tuecke, 2001. The
anatomy of the grid. Enabling scalable virtual
orgamzations. Int. J. High Perform. Comput.
Applications, 15 (3): 200-222.

Foster, 1., C. Kesselman, J. Nick and S. Tuecke, 2002. The
Physiology of the Grid: an Open Grid Services
Architecture for Distributed Systems Integration,
Open Grid Service Infrastructure, Global Grid Forum.

Karatza, HD., 2000. A simulation model of backfilling
and I/O scheduling n apartitionable parallel system.
Simulation Conf. Proc. Winter, 1: 496-506.

Li, X and M. Parashar, 2005. Adaptive Runtime
Management of Spatial and Temporal Heterogeneity
for Dynamic Grid Applications. Proceedings of the
13th High Performance Computing Symposium.

Spooner, D.P., S.A. Tarvis, I. Cao, S. Saini and G.R. Nudd,
2003. Local grid scheduling techniques using
performance prediction Computers and digital
techniques. IEE Proc., 50 (2): 87-96. hitp: //www .csie.
ntu.edu. tw/~ktw/uos/uos-cho. pdf.

Sulistio, A. and R. Buyya, 2004. A grid simulation
mnfrastructure supporting advance reservation. Proc.
16th Int. Conf. Parallel and Distributed Comput. Syst.,
pp: 1-7.

Yeo, C.5. and R. Buyya, 2004. A Taxonomy of Market-
Based Resource Management Systems for Utility-
Driven Cluster Computing, Software Practice and
Experience, Published Online in Wiley Inter Science.

