International Tournal of Soft Computing 4 (3): 142-147, 2009

ISSN: 1816-9503
© Medwell Journals, 2009

An Improved Architecture for Complete Cache Management in
Mobile Computing Environments

'G. Anandharaj and °R. Anitha
'Sengunthar Engineering College, *K.S. Rangasamy College of Technology,
Tiruchengode, Tamil Nadu, India

Abstract: Caching plays a key role in mobile computing because of, its ability to alleviate the performance and
availability limitations of weakly-connected and disconnected operations. Caching frequently accessed data
objects at the local buffer of a mobile is an efficient way to reduce query delay, save bandwidth and improve
system performance. Classical cache management strategies may not be suitable for mobile environments due
to the disconnection and mobility of the mobile clients. Cache management in mobile enviromment, in general,
mcludes cache placement, cache discovery, cache consistency and cache replacement techniques. In tlus
study, we design a combined cache management architecture which includes all the above techmiques. By
simulation results, it has been shown that our proposed architecture achieves lower latency and packet loss,
reduced network bandwidth consumption and reduced data server workload.

Key words: Architecture, complete cache, mobile computing, environments

INTRODUCTION

The mobile computing platform can be effectively
described under the client/server paradigm. A data item 1s
the basic umit for update and query. Mobile nodes only
issue simple requests to read the most recent copy of a
data item. There may be one or more processes running
on a mobile node, referred to as clients. In order to serve
a request sent from a client, the base station needs to
communicate with the database server to retrieve the
data items.

Caching frequently accessed data items on the client
side 13 an effective technique to improve performance in
a mobile environment. Average data access latency is
reduced as several data access requests can be satisfied
from the local cache (Cao, 2003), thereby obviating the
need for data transmission over the scarce wireless links.
However, frequent disconnections and mobility of the
clients make cache consistency a challenging problem
Classical cache management strategies may not be
suitable for mobile environments due to the disconnection
and mobility of the mobile clients.

Caching plays a key role in mobile computing
because of, its ability to alleviate the performance
and aveilability hmitations of weakly-connected and
discommected operation.

But evaluating alternative caching strategies for
mobile computing 1s problematic. Cache management

in mobile environment, mn general, mncludes the
following 1ssues to be addressed (Chand et al, 2007):

» The cache discovery algorithm that i1s used to
efficiently discover, select and deliver the requested
data item (s) from neighboring nodes

+ Cache admission control-this is to decide on what
data items can be cached to improve the performance
of the caching system

» The cache consistency algorithm which ensures that
updates are propagated to the copies elsewhere and
no stale data items are present

» The design of cache replacement algorithm-when the
cache space 1s sufficient for storing one new item, the
client places the item in the cache. Otherwise, the
possibility of replacing other cached item () with the
new item is considered

There is no prior research, which combines all the
above techniques and provides a complete solution for
cache management.

This study 1s an extension of our previous research.
We propose a Combined and Complete Cache
Management (CCCM) Architecture for mobile hosts. The
goal of our architecture is to reduce the caching overhead
and provide optimal consistency and replacement. [t aims
to improve the networl utilization, reduce the search
latency, bandwidth and energy consumption. The
architecture comprises of the following algorithms:

Corresponding Author: G. Anandharaj, Sengunthar Engineering College, Tiruchengode, Tamil Nadu, India

Int. J. Soft Comput., 4 (3): 142-147, 2009

Cache placement algorithm
Cache discovery algorithm
Cache consistency algorithm
Cache replacement algorithm

MATERIALS AND METHODS

Barbara and Tmielifiski (1994) have proposed a cache
solution, which 1s suitable for mobile environments. In
their approach, the server periodically broadcasts an
Tnvalidation Report (IR) in which the changed data items
are indicated. Rather than querying the server directly
regarding the validation of cached copies, the clients can
listen to these IRs over the wireless charmel and use them
to validate their local cache. The IR-based solution 1s
attractive because it can scale to any number of clients
wheo listen to the IR. However, the IR-based solution has
some major drawbacks such as long query latency and
low bandwidth utilization.

Castro et al. (1997) have proposed a new hybrid
adaptive caching technicque, which combines page and
object caching to reduce the miss rate in client caches
dramatically.

Vakali (2002) has presented a study of applying a
history based approach to the Web-based proxy cache
replacement process. Trace-driven simulation was
employed to evaluate and comment on the performance of
the proposed cache replacement techniques.

An et al. (2002) have proposed the use of machine
learming algorithms to rate and select the current best
policies or mixtures of policies via weight updates based
on their recent success, allowing each adaptive cache
node to tune itself based on the workload it observes.
ACME 1s used to manage the replacement policies within
distributed caches to further improve the hit rates over
static caching techniques.

Cao (2002) has proposed a power-aware cache
management. Based on a novel prefetch-access ratio
concept, the proposed scheme can dynamically optimize
performance or power based on the available resources
and performance requirements. Simulation results have
shown that their solution not only improves the cache hit
ratio, the throughput and the bandwidth utilization, but
also reduces the query delay and the power consumption.

Cao (2003) has addressed an UTR-based approach. In
his approach, a small fraction of the essential information
(called Updated Invalidation Report (UIR)) related to
cache invalidation is replicated several times within an TR
interval and hence the client can answer a query without
waiting until the next IR. However, if there 1s a cache miss,
the client still needs to wait for the data to be delivered.

143

Tang et al. (2008) have focused on developing
efficient caching techniques in ad-hoc networks with
memory limitations.

SYSTEM MODEL

Network model: In a mobile computing environment, the
geographical area 15 divided into small regions, called
cells. Each cell has a Base Station (BS) and a number of
Mobile Terminals (MTs). Inter cell and intra-cell
commurcations are managed by the BSs. The MTs
communicate with the BS by wireless links. An MT can
move within a cell or between cells while retaining its
network connection. An MT can either connect to a BS
through a wireless communication channel or disconnect
from the BS by operating in the doze (power save) mode
(Y et al., 1995).

Consider a mobile environment with n cells C,, C,,...
C,. For each cell C, DS, 1s the database server that can
keep pieces of mformation that may be accessed by other
systems. We assume that the database is updated only by
the server. A client is a system, which invokes queries for
data. Each cell Cicontains a set of clients S,, S,,... S,

Each client S, of the cell C ,can issue the query
through the base station BS,, which is directly connected
to the database server DS, A database server (simply,
server hereafter) can contamn more than one database and
can mdirectly commumnicate with all mobile clients in the
same cell through the base station BS;. A database can be
cached in one or more clients in a cell.

COMBINED AND COMPLETE
CACHE MANAGEMENT (CCCM)
ARCHITECTURE

Cache placement algorithm: In this algorithm, data
caches are placed into some clients known as active
nodes, based on their weight vector which comprises the
following parameters:

Available bandwidth
CPU speed

Access latency
Cache hit ratio

Active nodes, which are neighbors of a given client
form a cooperative cache system for this client, since the
cost for commumnication with them 1s low both m terms of
energy consumption and message exchanges. For a data
miss in the local cache, the client first searches the data
item 1n 1ts local neighbors before forwarding the request
to the next client that lies on a path towards server.

Int. J. Soft Comput., 4 (3): 142-147, 2009

As per our network model, in our system, there are n
cells. In each cell there are m clients.

For each client of the cell Cj, j =1,2.....n, let
BW; = Available bandwidth

8P, = CPU speed
AL; = Access Latency
Cri = Cache Hit Ratio
where, i=1,2...m
1. The weight of the client can be calculated as
W, =(BW,+ 8P, + CR)) + AL (1)

2. Form the vector W = {8, W.}, which denotes the client ids and
their corresponding weight values, sorted on the descending
order.

3. Denote the set of active nodes 8,, (0 <=k <), which satisties
the following condition Wy > [, where, the minimum
threshold value for the weight is.

4. Bach database server DS, caches the databases into the active
nodes set Sy.

Cache discovery: In this algorithm, when a data request is
initiated at a client, it first looks for the data item in its own
cache. If there 1s a local cache miss, the client will send
broadcast request packet to the set of active clients.
When an active client receives the request and has the
data item in its local cache, it will send an ack packet to
the requester to acknowledge that it has the data item.
The mobile clients that belong to the active node set
then form a cooperative cache system for other clients,
since the cost for communicating with them is low, both
in terms of energy consumption and message exchange.
For each request, one of the following three cases holds.

Case 1: Local hit: When copy of the requested data item
1s stored in the cache of the requester. If the data item 1s
valid, it is retrieved to serve the query and no cooperation
18 Iecessary.

Case 2: Active hit: When the requested data item is
stored in the cache of one or more active node neighbors
of the requester.

Case 3: Global hit: Data item 1s retrieved from the
database server.

Cache discovery algorithm: A cache discovery algorithm
is required to determine, where the requested item is
cached when the requester does
destination.

not know the

Once a set of active clients are formed, the
server broadeasts the vector {S_ d} to all clients, where
dy,j =1 2...... is the index of the cached items placed in the
active client S, k=1,2......

When a data request 1s wmtiated at a client, 1t first
looks for the data item in its own cache (local hit). If there
is a local cache miss, the client broadcasts request packet
to the set of active clients.

When an active client receives the request packet
and has the data item i its local cache (1.e., a active hit),
1t will send an ack packet to the requester to acknowledge
that it has the data item. The ack packet will contain the
following fields: time stamp Ts and weight value W. The
time stamp field helps to choose the latest copy of the
searched item and the weight value field helps to choose
the best client node.

When the query client receives ack packet from the
active clients, it selects the best active client Sbest with
max (T,, W) and sends a confirm packet to the client
Shest. The ack packet for the same item received from
other clients are discarded.

When the client Sbest receives a confirm packet, it
responds back with the actual data value to the requested
query node.

Cache consistency algorithm: Cache consistency is
required to ensure the validity of data. It involves
consistency between a data source and the cache copies
stored by the Cache consistency
maintenance algorithms can be divided mnto 2 main
categories: stateful (Kahol er af., 2001) and stateless
(Cao, 2003), based on whether the cache status is
maintained on the data source node. Existing consistency
maintenance algorithms for MANET (Huang et al., 2006,
2007) are mainly stateless.

In this study, we propose a stateful
consistency maintenance algorithm based on an Adaptive

cache nodes.

cache

Push appreoach. Each node maintains a timestamp value to
indicate the expuy of the cached items. Here the data
source node decides the set of active nodes, to which
updations are to be made, based on their cache status. For
the selected active caching nodes, data update
information 13 broadcasted based on the adaptive push
approach.

Using adaptive push, each source node informs the
caching nodes of data updates. The design 1s based on
the following objectives:

» If there are any pending queries to be served, update
the necessary cache copies

» Send the update mformation, before the timestamp
expires so that there should not be any other
updates.

s Ifthe server receives a data update on a data set
DS, then it decides the set {Su} of active
caching nodes to wupdate, based on the
following:

» Ifthe no of pending queries Q,on DS, is more than

the minimum query threshold Q,,

Int. J. Soft Comput., 4 (3): 142-147, 2009

The timestamp T, at the node S is about to expire
After the data source node has selected the set
of updating cache nodes, it needs a specific
mechanism to transmit the data updates to the
selected caching nodes

The server sends the UPDATE message to the
nearest caching node in the set {Su}

Upon receiving the UPDATE message, the
caching node acknowledges the UPDATE
message by sending an ACK message and
forwards the UPDATE message to the next
nearest caching node in the set {Su}

This process is repeated until all the nodes in
the set {Su;} receive the UPDATE message and
send ACK

From the gathered ACK messages, the server
knows the ids and timestamps of all the nodes.
Then, it propagates the updated data along with
the modified new timestamp value nTs, to all the
receiving nodes of {Su;}

If the sender of the UPDATE message did not
receive an ACK message within a time T, it
removes the corresponding node id from the set

Cache replacement: A cache replacement policy is
required when a client wants to cache a data item, but the
cache 1s full and thus, it needs to victimize a suitable
subset of data items to evict from the cache. Cache
replacement policies have been extensively studied in
operating systems, virtual memory management and
database buffer management.

The data item size may not be fixed, the used
replacement policy must handle data items of varying
sizes

The data item’s transfer time might depend on the
item’s size and the distance between the requesting
client and the data source (or cache). Consequently,
the cache hit ratio might not be the most accurate
measurement of a cache replacement policy’s quality
The replacement algorithm should also consider
cache consistency that is, data items that tend to be
inconsistent earlier should be replaced earlier

Cache replacement algorithm: In the cache replacement
algorithm, we propose to develop a Least Relevant Value
(LRV) based cache replacement policy, where data with
the lowest LRV are removed from the cache. The LRV 15
based on the following factors.

Access probability: Tt is based on the previous access
rate of a data item for a host.

Distance: It is measured as the number of hops between
the requesting client and the responding client.

145

Size: A data item with larger data size should be chosen
for replacement, because the cache can accommodate
more data items and satisfy more access requests.

We have developed Least Relevant Value (LRV)
based cache replacement policy, where data with the
lowest LRV are removed from the cache. The LRV 1s based
on the following factors.

Access probability: Tt is based on the previous access
rate of a data item for a host. An item with lower access
probability should be chosen for replacement. At a host,
the access probability A, for data item d, is given as:

(2

where, g is he mean access rate to data item d. a can be
estimated by employing sliding window method of last K
access tunes. Keep a sliding window of K most recent
access timestamps (ts', ts%,... ts*) for data item d, in the
cache. The access rate 1s updated using the Eq. 3:

K

2= e
(t: - ts i)
where:
t, = The current time
th = The timestamp of oldest access to item d in the
sliding window
K = Smallas 2 or 3 to achieve the best performance

Distance: Distance (dt) is measured as the number of
hops between the requesting client and the responding
client (data source or cache). This policy incorporates the
distance as an important parameter in selecting a victim
for replacement. This is because caching data items which
are further away, saves bandwidth and reduces latency
for subsequent requests.

Size (sz): A data item with larger data size should be
replacement, can
accommodate more data items and satisfy more access
requests.

Based on the above factors,
data item di with distance dt; is computed using the
following expression:

chosen for because the cache

a function F, fora

Fi= (A dt) sz (4

The 1dea 1s to remove the data item with least

value of F,.

Int. J. Soft Comput., 4 (3): 142-147, 2009

RESULTS AND DISCUSSION

Simulation setup: This study deals with the experimental
performance evaluation of our algorithms through
simulations. In order to test our protocol, the NS,
simulation software 1s used. NS, 15 a general-purpose
simulation tool that provides discrete event sumulation of
user defined networks.

In our simulation, the channel capacity of mobile
hosts is set as 2 Mbps. The MAC protocol used is 802.11
for WLAN. Tt has the functionality to notify the network
layer about link breakage. In the simulation, mobile nodes
move in a 600x600 m rectangular region for 50 sec
simulation time. Imitial locations and movements of the
nodes are obtained using the Random Waypomnt (RWP)
model of NS,. All nodes have the same transmission range
of 250 m. We divided the area mnto 6 cells. Each cell
consists of 6 clients. The simulation parameters are
summarized in Table 1.

In all the experiments, we used the following
evaluation criteria. We compare our CCCM architecture
with the traditional LRU scheme {Cao, 2003).

Simulation results: A. The average downlink traffic
under different query generate time Fig. 1 shows the
relationship between the downlink traffic and the query
generation time Tquery. As can be shown, the average
downlink traffic increases when Tquery increases. Note
that if several clients request for the same data item during
the same mterval, the cached host broadcasts the data
item once. As less broadcasting data 1s shared, the
average downlink traffic increases. Not surprisingly,
CCCM outperforms LRU.

The average delay under different query generate time:
Figure 2 shows the average query latency as a
function of Tquery. Each client generates queries
according to the mean query generate time. The generated
queries are served one by one. If the queried data 1s in
the local cache, the client can serve the query locally;
otherwise the client has to request the data from the
active clients. As, we can shown in Fig. 2, the delay of
CCCM 1s much less than that of LRU. Thus is due to the
reason that CCCM use the cache space more effectively
and the number of queries sent to the server can be
reduced.

End-to-end delay under different traffic rates: Figure 3
shows the average end-to-end delay for different traffic
rates. Figure 3, shows that CCCM has less delay, when
compared with LRU.

Table 1: Sirmulation parameters

No. nodes 36
No. cells 6
Clients/cell 6
Slot duration 2 ms
Routing protocol AODV
8peed of mobile 5ms
Traffic model CBR

go9 —* CCCM

-=—LRU

—_————
600-

.’.//I—l
400-

Downlink traffic (bytes)

=

5 10 15 20
Mean query Gen. (fime)

Fig. 1: Query generation time vs. downlink throughput

067 ——cceMm

0.5 -=-LRU
=
= 0.4
E 0.3
g 0.2-

0.1

0 y T T .
5 10 15 20
Mean query Gen. (time)

Fig. 2: Query generation time vs. query latency

0.6 ——CCCM End-to-end delay
054 =LRU
-
E 944
i‘ 0.3
0.2
0.1
0 T T T 1
200 400 600 800
Rate (kb)

Fig. 3: Traffic rate vs. delay

6001 ——CCCM
500 .\’—ﬁo—,_:iku
400-
b
% 300
-]
200
100-
Y% @ " e ' @
Cache size

Fig. 4: Cache size vs. throughput

146

Int. J. Soft Comput., 4 (3): 142-147, 2009

The average throughput under different cache sizes:
Figure 4 shows the average throughput received for
different cache sizes. Figure 4, shows that CCCM has
more through put, when compared with LRU.

CONCLUSION

Cache management in mobile environment, in general,
includes cache placement, cache discovery, cache
consistency and cache replacement techniques. In this
study, we have designed Combined and Complete Cache
Management (CCCM) architecture for mobile hosts, which
include all the above techniques. The architecture have
improved the network utilization, reduced the search
latency, bandwidth and energy consumption. By
simulation results, we have shown that our proposed
architecture achieves lower latency and packet loss,
reduced network bandwidth consumption, reduced data
server workload. We have not considered the failure of
database server in our architecture. The effect of node
mobility is also not considered. So, in our future research,
we will extend this architecture with efficient recovery
schemes and node mobality.

REFERENCES

Ar, I, A Amer, R B. Gramacy, EL. Miller, S.A. Brandt and
D.DE. Long, 2002. ACME: Adaptive Caching Using
Multiple Experts. In: Proc. Informatics, Paris, France,
14: 143-158. http://citeseerx.ist. psu.edu/viewdoc/
summary?do1=10.1.1.12.6895.

Barbara, D. and T. Imielifiski, 1994, Sleepers and
workaholics: Caching strategies in mobile
environments. ACM SIGMOD Rec., 23 (2) 1-12.
DO http://doiacm.org/10.1145/191843.191844.
http://portal.acm. org/citation. cfin 71d=191844.

Cao, G, 2002. Adaptive power aware cache management
for mobile computing systems. Elevnth Int. www
Conference, Hawaii, TISA, 7-11 May. ISBN: 1-880672-
20-0. http://eiteseerx.1st. psu.edu/viewdoc/summary?
doi=10.1.1.18.7718.

Cao, G., 2003. A scalable low-latency cache invalidation
strategy for mobile environments. [EEE. Trans.
Knowledge Data Eng., 15 (5): 1251-1265. DOIL: 10.
1109/TKDE.2003.1232276. http: /fieeexplore.ieee. org/
xpl/freeabs all.jsp? arnumber=1232276.

147

Castro, M., A. Adya, B. Liskov and A.C. Myers, 1997.
HAC: Hybrnid Adaptive Caching for Distributed
Storage Systems. ACM SIGOPS Operat. Syst. Rev.,
31 (5): 102-115. DOL http://dor.acm.org/10.1145/
269005, 266666. http://portal.acm.org/citation.cfm?
doid=269005.266666.

Chand, N., R.C. Joshi and M. Misra, 2007. Cooperative
caching in mobile ad hoc networks based on data
utility. Mob. Inform. Syst., 3 (1): 19-37. http://portal.
acm.org/citation.cfm 7id=1376600.

Huang, Y.J. Cao and B. Jin, 2006, A predictive
approach to achieving consistency in cooperative
caching in MANET. ACM International Conference
Proceeding Series, ACM New York, USA, 152 (50).
DO http://doi.acm.org/10.1145/1146847.11 46898.
http://portal acm. org/citation.cfim?1d=1146898.

Huang, Y.C., . Wang, 7. Jin, B. Feng and Yulin, 2007.
Achieving flexible cache consistency for pervasive
internet access. 5th Annual IEEE Int. Conf. Pervasive
Comput. Communic., March, 19-23, I[EEE Computer
Society Washington, DC, USA, pp: 239-250.
DOT: 10.1109/PERCOM. 2007 .6. http://portal.acm.org/
citation. cfm?1d=1263542.126371 8&coll=GUIDE&dl=
GUIDE.

Kahol, A.S. Khurana, S.K.S. Gupta and P.X. Srimani, 2001.
A strategy to manage congistency in a
discommected distributed environment. IEEE
Trans. Parallel Distributed Syst., 12 (7); 686-700.
DOT:10.1109/71.940744 http://portal acm.org/citation
cfm?1d=507295.

Tang, B., H. Gupta and 5.R. Das, 2008. Benefit-Based Data
Caching in Ad Hoc Networks. TEEE Trans. Mob.
Comput., 7 (3); 289-304. DOL: 10.1109/TMC.2007.
70770 http: //portal acm.org/citation.cfm 7id=1340222.

Vakali, A., 2002, Proxy cache replacement Algonthms: A
history-based approach. www, 4 (4): 277-297.
DOL10.1023/A:1015133818512 htp: //portal.acm. org/
citation.cfm ?1d=598690. 5987 66& dI=GUIDE&AI=GTIT
DE.

Yin, L., G. Cao and Y. Cai, 1995. A generalized target-
driven cache replacement policy for mobile environ-
ments. J. Parall. Distrib. Comput., 65 (5). 583-594.
DOT:10.1016/).jpde.2004.12.002. http: //portal .acm.org/
citation.cfin?1d=1073768.

cache

