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Abstract: In this study, we propose a novel algorithm for solving the permutation ambiguity problem in
convolutive blind source separation of speech signals. Transferring convolutive mixtures into time-frequency

domain, enables us to separate source signals by employing instantaneous algorithms in each frequency bin.
After separation, the main challenge 1s the scale and permutation ambiguities which can imperil the separation
performance. Overcoming this challenge needs the reordering of all separated signals in each frequency bin
according to order of source signal. In this study we propose a new algorithm for reordering the separated
signals based on statistics of MFCC of speech signals. In each frequency bin, the separated subband signals
are transferred back to ime-domain and their individual MFCC’s are extracted. Then, based on simple statistics
of the MFCC’s the permutation problem is resolved. The proposed algorithm drastically decreasesthe
computational complexity and as a result speeds up the permutation correction process.
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INTRODUCTION

Blind Source Separation (BSS) 15 a method for
separating mixed signals without any knowledge of the
sources and their combination process. In recent decades,
the BSS has been the focus intense interest because of its
wide range of applications in various fields such as
biomedical signal processing (Pendharkar et al, 2014)
telecommumcations, signal processing (Besic ef al., 2015)
seismic and other geological and mechanical systems
(Yu et al., 201 4). However, in this study, we will focus on
BSS applied to convolutive mixtures of speech signals. In
this scenario, it 1s assumed that each speaker signal 1s
passed through a linear time-invariant filter and received
by sensors (microphones). Accordingly, the separation is
much more difficult than the instantaneous case where
only the linearly scaled versions of the source signals are
received by sensors. Many different approaches have
been developed for solving the convolutive BSS problem
(Buchner et al., 2005). We will provide a very short
summaery of the convolutive BSS here.

There are two main approaches to convolutive
BSS: time-domam and frequency-domaimn methods. In
time-domain approach the sources signal are separated
from the mixed signals by optimizing a FIR filter, typically
with a large number of taps. This approach in very slow,

encounters convergence problems (specially with

longer FIR filters) and suffers froma heavy
computational cost (Won and Lee, 2008). A particularly
more effective time-domam approach 1s a method based
on sparsity of signals. Tn a sparse signal, most of the
samples have a near-zero or msignificant value (which can
be practically ignored) and a small subset of samples
possesssignificant values. In recent approaches, the
Sparse Component Analysis (SCA) is now widely
employed for separation of speech signals (Gribonval and
Lesage, 2006).

In contrast, frequency-domain approachesare more
attractive. Transferring mixed signals from time-domain to
frequency-domain, converts the convolutive mixtures to
instantaneous ones and as a result, instantaneous
separation algorithm such as Independent Component
Analysis (ICA) (Nesta et al., 2011) can be applied to
mixtures (Mukai et al., 2006). In another frequency-domain
approach, the mixing process is modeled as a beamformer.
Then by estimatingthe Direction of Arrival (DOA) m all
frequency bins, the separated signals are properly
aligned and sources can be separated (Xiong et al., 2014,
Sawada et al., 2011).

Source separation n frequency-domain suffers from
two major drawbacks: scale ambiguity and permutation
ambiguity. Scale ambiguity is due to the fact that the
separated signals in each frequency bmn have unknown
scale. Hence after the separation, the recovered signals

Corresponding Author: Mostafa Esmaeilbeig, Department of Electrical and Computer Eng., Science and Rescarch Branch,

Islamic Azad University, Tehran, Tran



Int. J. Syst. Signal Control Eng. Appl., 9(3-6): 157-1635, 2016

are severely distorted due to random scaling of each
subband signal. The permutation ambiguity, on the other
hand, stems from the fact that in each frequency bin, the
order of the separated signals 1s random and independent
of other frequency bins. This leads to severe distortion
and loss of signal continuity in time-domain. Obviously,
1t 18 umperative to resolve these two ambiguity problems
for the frequency-domain approaches to BSS to be
practically useful. In this study, we will deal with the more
important problem of the permutation ambiguity.

It 1s obvious that m order to extract the sources from
the separated signals m frequency-domain, one must
compare each recovered signal in each frequency bin with
the recovered signals in all of the other frequency bins.
Assuming L frequency bins and N sources, one needs N!
comparisons for each frequency bin and a total of L.N!
comparisons for each time-frame of demixed signals.
Considering the fact that signal comparisons
time-consuming processes, the computational complexity
will be very large for large munbers of frequency bins (L)
and sources (N). In reality, the number of frequency bins
(L) should be comparable to (and larger than) the length
of the actual convolutive mxing filter in time-domaim. This
constitutes the major motivation of this research to seek
alternative and simpler methods for the ambiguity problem
in the frequency-domain approaches to the convolutive
BSS. To better signify the problem, a review of current
state of the research 1s presented here.

In the last decade, many different approaches have

are

been proposed to overcome the permutation ambiguity.
These algorithms can be divided into three main groups.
The first group uses the spectrum consistency of source
signals the second one exploits the consistency of
separation filters and the last one employs signal
statistics in subbands (Mazur and Mertins, 2009,
Serviere and Pham , 2006, Sawada et al., 2004).

In the first category, the correlation between the
amplitude of the subband signals in different frequency
bing is used for reordering the recovered signals. The
variation of amplitude of subband signals of each source
has a unique pattern based on the contiguous signal
pattern in time-domain. This forms the basis for an
approach of clustering the subband separated signals

(Anemuller and Kollmeier, 2000). This method suffers from
two main drawbacks. First, if the source signal has any
discontinuities in time-domain (due to silence time or
abrupt change in speech signal) the spectrum consistency
will be lost. The second deficiency is the error
propagation which means that if in a frequency bin, the
signal is wrongly attributed to a source, this error will be
repeated in other frequencies and as a result, the error
propagation occurs in the rest of frequency bins.

158

As an example of this group of algorithms,
Duran-Daz et al. (2012) exploit the amplitude modulation
correlation between speech signals in adjacent frequency
bins. They use the correlation of logarithmically scaled
separated signals in each frequency bins for reordering
the recovered signals and overcoming the permutation
ambiguity.

The second category uses the continuity of the
demixing filter coefficients. As a basic principle, this
method exploits the contimuty and the smoothness of the
frequency response of the separation filters. This method
also has two main drawbacks. The
propagation similar to the first category. The second

first is error

one 18 the mefficiency of separation in highly reverberant
environments where the separation filter must include
thousands of taps which leads to a high computational
cost and increases the processing time.

The third category employs the statistics of subband
separated signals in each frequency band. It 1s shown that
these statistics are highly correlated for one source in
adjacent frequency bins. Mazwr and Mertins (2009)
introduce a new method to resolve the permutation
ambiguity problem specifically targeted for speech
signals. They show that speech signals in each subband
has a Generalized Gaussian Distribution (GGD) and the
related parameters of the GGD for each source signal
demonstrate continuity over adjacent frequency bands to
the point that one can exploit this property for resolving
the permutation ambiguity.

Also, et al (2015)
new function of generalized divergence, called the

Sarmiento introduced  a
AB-divergence D*",.(p, q). This function represent the
dissimilarity between two vectors p and g, therefore the
negative of this parameter can be used as a measure of
similarity between the two vectors. They employ thus
parameter for evaluation of similarity of the absolute value
of the speech subband signals (represented by STFT
coefficients in each frequency band) to resolve the
permutation ambiguity.

Our proposed approach is resolve the permutation
ambiguity in time-domain. The method is based on the
assumed continuity of the separated suuband signals
from one single source. Assuming I. subbands and N
sources, after the separation of mixed signals in
time-frequency domam, the L.N separated subband
signals are each individually transferred back to
time-domain, obtaiming L. N time-domain wavelets with N
wavelets per subbands which has to be reordered. Each
of these N wavelets should be compared to the other
wavelets in the adjacent time-frames to recover the correct
reordering of the signals. To implement this wavelet
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Fig. 1: Diagram of the proposed method

comparison, we must select a suitable feature. We have
proposed the use of MFCC of the time-domain wavelets
as an efficient feature for this task.

This approach has precedence in the literature.
Khanagha and Khanagha (2009) mtroduced an approach
for solving permutation problem n time-domain based
on TDOA for localization of sources. They use
MFCC and PLPCC feature for clustering and recovery of
source signals from mixtures in time-domain. In our
proposed method, at first we transfer the mixed
signals to time-frequency domain and after separation of
the signals in subbands each subband signalsare
transferred back to time-domain to obtain a wavelet per
source per subband. Next based on the MFCC’s of thus
wavelets, the separated signals are clustered. Then
according to this clustering, all time-domain wavelets
associated with successive subbands are reordered.
Finally, the subband signals are reordered based on
wavelet orders m each subband and transferred back to
time-domain.

Figure 1 shows the diagram of proposed method. The
MFCC has played a sigmficant role in speech detection,
speech recognition and alse for speaker identificationand
verification. We extract the statistics of MFCC of the
time-domain wavelets and use them as a critericn for
reordering them. We will show that the MFCC has a good
performance for solving permutation ambiguty and can
be used in time domain instead of frequency domain.

Problem description: To model the convolutive BSS,
assume that there are M sensors and N sources signals
s(ty (1=1, ..., N) which are convolved with environment
unpulse response and then mixed together to constitute
the sensor outputs of x(t) G = 1, ..., M). As such, the
output sighalscan be written as:

X, (1) = iihu(k) 5.t k) (1)

1=l k=1

where, h;(k) represents the environment impulse response
from source i to sensor j. By using Short Time
Fourier Transform (STFT), the signals are transferred from
time-domain to frequency-domain and the convolution is
replaced by multiplication:
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X(f,7) = H(F)S(F,T) @
where, X (f, ©) = X © X ), ..., X, )" and
S v =[S v S ..., (f U] are STFT
representations of the mixed and source signals, f
stands for frequency and T stands for time mdex and H(f)
15 the channel impulse response Fourier Transform.
As a result, 1t 13 possible to separate the sources in
each frequency band mdependently. There are many
algorithms for instantaneous separation such as ICA and
its derivatives. After separation, we face with two
problems: scale and permutation ambiguity Eq. 2 can be
written as:

X(f,7) = HIFYS(F, T) = A(F)p(f)S(f, 1) (3)

where, A(f) is an arbitrary diagonal scaling matrix and p(f)
1s a frequency-dependent permutation matrix. The scaling
matrix models the inevitable amplitude variations in
frequency bands. This ambiguity should be resolved to
avold severe distortion due to random scaling of various
frequency bands. In Ikeda and Murata (1998) proposed a
method to correct this ambiguity by applying a post-filter
on the single separated signals which were the inverses
of the unmiximg filters. Another method, called Minimal
Distortion Principle (Matsuoka, 2002) proposes to employ
a filter defined as:

H(f) = Diag(H™ (F)).H(f) &

where, Diag (H™()). H(f) is the inverse of matrix H(f) with
all off-diagonal elements set to zero. Most of methods
designed to resolve the permutation ambiguity are applied
1n frequency-domain. Typically, one of methods reviewed
in the Introduction section are applied and after solving
the permutation ambiguity, the separated signals for each
source from all subbands are combined together and
transferred back from frequency-domain to time-domain.
In contrast to the commoen methods, instead of correcting
the permutation ambiguity in frequency-domain, the
separated signals in each subband is separately
transferred to time-domain (each time section obtained for



Int. J. Syst. Signal Control Eng. Appl., 9(3-6): 157-1635, 2016

a frame in subband is called a ‘wavelet’ here) and the
permutation ambiguity is resolved based on these
subband-mdexed time-domain wavelets.

MATERIALS AND METHODS

Method for resolving permutation: Historically certain
features of speech signal have been employed for speaker
identification. One of the most commonly used features is
the MFCC which acts as a classifier. Motivated by this, in
the proposed method, after separationof all sources in
each frequency subband, the subbands signals are
individually transferred to time-domain. For each subband
and each separated source, we obtain an equivalent time
segment, a wavelet which 1s associated with a source
signal. However, the association of obtammed wavelets to
various source signals will be different in various
subbands.

To demonstrate how the MFCC of these wavelets can
be helpful, consider the mean of MFCC’s of full-band
time-domain signal for each source. We demonstrate that
beyond a certain frame-length, this mean value: exhibits
time-continuity for each source signal and discriminates
between various sources. In order to show tlus we select
five speech signals from different speakers form the

——— Sourcel ——— Source?2

TIMIT database sampled at 16 kHz and extract MFCC’s
from each speech signals with different frame sizes and
with 50% frame overlap. Next, we calculate the means of
these coefficients and compare them for various frame
lengths. Figure 2 depicts the results.

As depicted, for larger frame-sizes, the mean values
perform better in terms of both time-continuity and
discriminability of different sources. To demonstrate the
effect of number of MFCC’s on the mean value
behavior, we show in Fig. 3 that: as the number of
MFCC’s increases, the mean value decreases but it does
not have a considerable effect on the time-continuity.
The conclusion reached is that the mean values of
MFFC’s are effective in source discrimination provided
that one considers long-term signals, 64 msec or more
{1024 samples or more in our experunert).

In our STFT-based framework of Fig. 1 for resolving
the permutation in time-domain for each subband, the
MFCC’s of the tume wavelets are extracted fromall
separated signals and their mean values are calculated.
Starting from first subband, the separated signals are
ordered according to their mean values. For the next
subbands the mean values are compared to mean values
of previous subband and separated signals are ordered
accordingly.

Source3 ~ Source4 ——— Source5

100 150 200 250 300

600

Mean value of MFCC

500 1000 1500 2000 2500
5000 0O 2000 4000 6000 8000 10000
Values

Fig. 2: Mean values of MFCC for different frame sizes of a) 2048; b) 1024; ¢) 512; d) 256; ¢) 128; ) 64 samples
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Fig. 3: Effect of number of MFCC’s for a frame length of
1024 sample

In the STFT-based BSS scenario, assumethat there
are L subbands and in each subband N sources. The
separated sources in each subband 1 are denoted by
X(f, T) where 1<i< N and 1<1<1. and f; represents the
subband frequency in subband 1 and T represents the
time-frame index. Now for each subband, the separated
sources X(f, 1) are transferred back to time-domain to
obtain the wavelet x(1, t}) which is the time-domain
contribution of the source signal T to subband 1. Next, we
extract the MFCC’s from these wavelets associated with
all N sources and calculate the mean valuesof the
MFCC's, denoted by m; (1, T).

Now for the ith source in a subband k, k=1we
calculate the distance between m,(k, 1) and the mean value
for all other sources: m.(k-1, T) 1<j<N:

_ argmin
4= jizj=n

)

jm, ke, 7 | myk ~10)|

Now, it 1s can be concluded that the wavelets x, (k.t)
and x,(k-1,t) are both associated with one source signal.
The minimization of Eq. (5) is repeated for all neighboring
subbands, k = 2, 3, ..., N and all sources 1 <j<N. Now
the indices obtained m this process are used in
frequency-domain for permutation correction.

There are two potential problems with this simple
method: the first is bad clustering due to occasional
similarities between the mean values of MFCC’s of some
sources. As shown m Fig. 2, in some tune segments, the
mean values for some speech signals have a hard time in
discriminating between the sources which leads to errors
mn ordering. The second problem isthe error propagation
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Fig. 4: Effect of number of subbands on MFCC mean
value for a 2x2 mixture: a) 16 subbands and
b) 128 subbands

in subbands; if an error occursduringclustering n any
subband k, this ordering error will propagate to all
subbands afterwards.

For first drawback, if some mean values of MECC 1n
any time segment are the same or close, we mark these
time segments and can use other methods for resolving
the permutation ambiguity such as frequency-domain
spectrum consistency (Fig. 1).

In order to prevent the subband error propagation,
instead of comparing the mean value of MFCC of each
source signal in a subband k with the previous subbnad
k-1, we can compare the mean value of MFCC of present
subbandk with the average of mean values of MFCC’s,
averaged over subbands 1-k-1.

For a 2x2 signal mixture, after separation in subbands
with the ICA algorithm applied in 16 subbands, we obtain
the mean values of MFCC’s m,(k, 1) for one frame of the
two sources and these values are shown in Fig. 4.

RESULTS AND DUISCUSSION

Simulation . room center with equal separations. We used
a Room Impulse Response (RIR) generation method
(McGovern, 1994) to produce the channel impulse
responses. The room 15 2 m wide and 3 m long and 3 m
height. The RIR’s were generated with 150 msec
reverberation time at 16 kHz sampling rate, with a
reflection coefficient of 0.5 for floor, roof and walls. For
speech signals, we used sentences from the TIMIT
database with 16 kHz sampling rate with 30 sec of duration
each. The speech signals were convolved with different
RIR signals and mixed together. Afterwards by using
STFT, the mixtwre signals were transferred to the
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Fig. 5: Simulated test room arrangements and dimensions
for 2x2 mixtures

frequency subbands. The number of subbans were
changed from 8-128 in various experiments as reported
below. The STFT filter bank was a Near Perfect
Reconstruction  (NPR) with
analysis/synthesis window, overlapping by 50% m time.

After separation in all subbands by the fast
ICA algorithm, subband signals were transferred to
time-domain and the MFCC-based permutation method of

one a Hamming

study 3 was applied to resolve the permutation problem in
subbands as depicted n Fig. 1. Finally, the reordered
subband signals were synthesized back in time-domain to
obtain the source estimates.

In order to objectively evaluate the separation
performance, we used three measures of: Source-to
Artifacts-Ratio (SAR), Signal-to-Distortion-Ratio (SDR)
and Source-to-Interference-Ratio (SIR) as defined in
(Vincent et al., 2005). Also the quality of separation was
measured by the Perceptual Evaluation of Speech
Quality (PESQ) score as described in Nesta er al.
(2001). As depicted in Fig. 2, as the time-frame length
increases, the MFCC-based permutation performs better.
Notice that with a given data length,increasing the frame
length, inevitably will decrease the number of frequency
bands.

Figure 6 shows the effect of number of frequency
bands and MFCC’s on the PESQ parameter. As depicted,
the optimal number of MFCC’s is 3 and beyond this value
the PESQ score will decrease. Also, it is evident that the
quality as measured by PESQ decreases as the number of
frequency bands increase beyond 8.

The performance of the proposed method (with
8 subbands) was also compared with those of 4 main
competing methods. The first method 1s the spectrum
consistency approach of (Dwan-Daz ef al, 2012) the
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Fig. 6: Effect of number of frequency bands on separation
quality

second one 1s the DOA approach, the third 1s the GGD of
(Khanagha and Khanagha, 2009) and the forth one is the
GD of Duran-Daz. For comparison the STR, SDR, SAR and
PESQ parameters for all these approaches are measured.

As shown m Fig. 7, the performance of proposed
method 18 comparable to those of DOA and Spectral
Consistency methods but it inferior to those of GGD
and GD.

The main advantage of the proposed method 1s its
simplicity and the resulting speed in resclving the
permutation problem. In the spectrum consistency
method, the spectra of all separated signals must be
calculated and the correlation between all spectra must be
calculated. In this case, if we have N k-point subband
signals, we must calculate N k-point spectra and also
calculate k-point correlations between all possible signal
pairs which leads to computational cost increase. In the
DOA approach for each signal one must calculate the
angle of received signal and compare the angle of all
signals m all subbands. In the GGD methed at firstthe
parameters of the
estimated and compared in each subband. In the GD
method, the divergence function must be calculated in
each subband.

In our proposed method, we need to calculate the
MFCC’s for each subband frame, calculate its mean and
then only compare this single value in all subbands which

Gaussian distribution must  be

drastically decreases the computational complexity.
Figure 8 shows the processing tine for permutation
correction phase for all these methods. As Fig. 8 depicts,
the processing time of the proposed method is very small
compared to other methods which leads to the increased
speed of the overall signal separation.
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CONCLUSION

In this research, we presented a new method to
resolve the permutation ambiguity problem in the
subband-based convolutive BSS. The method is based on
comparing the MFCC’s of subband speech signals
after mndividually transferring the subband signals to
time-domain.

163

Comparing to four competitive methods, all operating
in subband domain, the proposed method is superior to
the DOA and specttum consistency algorthms but
inferior to compare to the GGD and GD algorithms, in
of separattion performance as measured by
of SIR, SAR, SDR and
In term of computational complexity, the

terms
four objective measures
PESQ.
proposed method 18 superior to all of the four competitive
methods.

Currently, there a trade-off between the
performances of the proposed reordering algorithm and
the BSS method applied in subb and domain As the
time-frame length increases, the separation performance of
typical BSS algorithms such as the ICA degrade
(Esmaecilbeig et af., 2016). In contrast, the proposed
method for permutation correction performs better

is

with longer time-frames. As a futwre work, we will
try to reconcile this trade-off by improving the
algorithm benefit
computational simplicity while sacrificing less on
the quality of the separated signals as measured by the
PESQ score.

Finally, so far we have only employed the
MFCC means permutation
There are other possibilities and scenarios based on
the MFCC statistics which
performance.

reordering to from  its

value for resolution.

can yield Tetter
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