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Abstract: The study is devoted to the creation of a method for predicting the temporal stability under
conditions of dynamic and static effects during process of operation of a turbogenerator. The method is based
on the restoration modeling the operating mode of the turbogenerator under critical conditions; the model
assumes an adaptive response at the initial stage of the critical state recognition. The deep neural network
teaching technique whilst the classification of spectrogram anomalies is provided.
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INTRODUCTION

Currently, to determime the ocritical state of
turbogenerators, emphasis is placed on identifying
defects and assessing their impact on turbine operation in
order to eliminate destructive factors. External factors that
lead to an aggravation of the state of the turbogenerator
are usually known before the occwrrence of frequency
flashes of vibrations which allows us to speak of a raging
malfunction.

The safety of industrial turbogenerators as well as
shaft inserts, bearings and static components 1s important
for ensuring the operability of thermal power plants
(hereinafter-TPPs) which m turn determines the stability
of the development of national and regional production
processes. This makes it necessary to include systems for
ensuring the stable operation of the units in the control
loop. That will allow carrying out preventive monitoring
of the operation of techmcal devices before the onset of
a critical situation and causing damage. With this
approach to the safety of TPPs, it is possible to increase
the temporal stability of the operation of the nodes, i.e., to
minimize faults within a predetermined period of time.

The prognostic model of operation of complex
technical systems is based on the function of determining
the reliability of a techmcal system. Considering the
multicompenent nature of the technical system and the
dynamic nature of internal and external factors, reliability

can be defined as the ability of an object to predict,
maintain stability, absorb iumpacts, respond, adapt and
recover under undesirable effects or intemal states
(Himavathi et al., 2007).

For the case of scientific and technical problems
associated with complex techmcal and mformation
systems in the practical field of consideration the
reliability will be defined as the degree of safety of
complex technical systems. Then, the temporal stability of
the elements of the turbogenerator will be defined as the
possibility of restoring the normative values of the
parameters of the functioning of aggregates and technical
elements with the aim of leading to a “return to the
working state” (stability) m the event of adverse
consequences caused by natural or human factors
(Budadin et al., 2014).

The proposed method for assessing the safety of an
object 13 based on determining the rehiability of the facility
by collecting and analyzing information on four
aggregated groups of measures to improve reliability:
preparedness, mitigation measures, response capabilities
and recovery mechanisms. Figure 1 presents a structural
diagram of the seven reliability components with
processes that ensure the temporal stability of the
turbogenerator. This approach sets the monitoring base
for developing the questiomnaire to identify the necessary
information for assessing the reliability of the TPP system
at the facility level.
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Fig. 1: Functional diagram for ensuring the temporal
stability of theturbogenerator

With the increase m the number and complexity of
the elements of the turbogenerator, the number of
possible problems that need to be taken into account in
assessing temporal stability and forecasting risks will also
ncrease. Since, a comprehensive evaluation of temporal
stability is carried out both for the individual aggregate,
the component and the stability of the
turbogenerator design, it 1s necessary to take into account
the hidden mterrelationships between the nodes and
external factors.

entire

Such uncertainties include the inclusion of stochastic
relationships (for example, the composition of specific
chains of events), lack of data, limited time and financial
security which males it more difficult to obtain a complete
picture of the integrated safety assessment of the
turbogenerator.

In part, these problems can be solved by
applying a “system approach” to assessing reliability
over time (Ivchenko et al., 2014; Ostroukh et al, 2015,
Bekhtin er al., 2014; Krug et al, 2015). In this case, 1t is
proposed to assess the reliability of dividual
subsystems at different levels with the construction of a
forecast in the short term. When considering higher-level
systems, 1t 1s possible to determine the most important for
the reliability assessment of a low-level system. In turn, in
relation to systems of a lower level, the most important
components are determined from among those that are
available.

DESCRIPTION OF THE MODEL OF TEMPORAL
STABILITY

In the case of application of fault detection methods
based on mathematical models, it 13 suggested to take mto
account the object configurations. With regard to internal
connections used in the detection of faults and the
possibility of fault detection, the situation can be
substantially improved due to the presence of additional
measurements.

Therefore, for the formation of the feature space
m the construction of the temporal stability model
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Fig. 2: Parameters of malfunctions of umts of a design
of a tubogenerator on a temporal scale of a
trend for vibration measurements; A(f), m/sec?;
P =250 MW, Q =120 MBAr

it 18 necessary to determine the parameters of the main

types of malfimctions of turbme generators of TPPs.
Consider, for example, factors affecting temporal stability
in the example of a group of faults related to the turbine
rotor imbalance class.

The unbalance of rotating rotor masses is one of the
most common defects in equipment which leads to a sharp
increase in vibration (Nazolin and Polyakov, 2006).

Rotation of any solid body can take place without
effort on the part of other bodies, only if the axis of
rotation coincides with one of its three main axes of inertia
passing through the center of gravity. If the axis of
rotation of the rotor does not coincide with its main axis
of inertia, the forces that cause increased vibration will act
on the supports (Fig. 2).

Figure 2 shows frequency bursts which indicate
an increasing factor in reducing the reliability of the
turbogenerator design. In this case, it is possible to
influence the cause of the fault, for example, by changing
the bearing clearances. Such a situation can be taken into
account in the system for managing node parameters.

Thus, when constructing the forecast, it is important
to determine the cause-effect relationships and the factors
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comnections, it i1s possible that there is no complete
information on the state of aggregates in which case it is

lead to malfunctions. TIn determining such

necessary to apply the method of abductive mference that
can be realized, for example, using a deep neural network
(Yuetal, 2014). We give an explanation.

Forthe case m+1 when simple hypotheses I, j =0, 1
..., m are put forward to determine the true state of a
turbogenerator. To construct a rule for choosing a
solution, we use the criterion of minimum mean risk.

The use of any predetermined rule for choosing a
solution, due to the random nature of the considered
failure factor of the node 1s associated with the possibility
of erroneous decisions. The observed sample of
explanations = (x -%,) may turn out to be in the
region of the set X, by k=0, 1, ..., m at which the decision
v, will be made that the true state is S, although in reality
the indicated sample 1s related to another state S, j#k. The
presence 1n the sequence of selutions 1s not only right
but also wrong is the price for decisions made with

1 Kgs e

mcomplete information.
The consequences of erronecus decisions are taken
mto account by the loss function (matrix) which

prescribes to each erroneous solution, i.e., each
combination 8, and v,, j#k a fee:
fjk = I(Sj, Ty )>0 (D
Along with this, values can be introduced:
I, = (Sj,y) I.,ji#k 2

Tt is related to making the right decision (Akimov,
2013). For a given state, the average loss value when
using a definite decision rule for a solution of inductive
output, 1e., way of partitiomng the sample space into
regions and establishing their correspondence to a set of
solutions in a sufficiently long sequence of experiments
1s approximately equal to the average value in the sample
space (mathematical expectation) of losses:

:iIJkP{Yk/SJ}:iilkp{ﬁexk/&} 3

where, Ply,/s;} the conditional probability of the sample
falling into the domain 3, if the state actually takes place
S;. The conditional average loss 1; for the state S; asit 1s
known in literature as conditional risk. By averaging the
conditional risk for all states, we obtain:

15
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where, p; is the a priori probability of the state S, This
value can be taken as a criterion of the quality of the
abductive mference. This rule consists in splitting the
sample space into m disjoint domains X, and assigning to
each of the regions one of the solutions vy, that the
hypothesis H, 1s true.

Arguing in this way, we can prove that the minimum
value of the average risk R realizes a partition of the
sample space, under which the domain 2, k=0, 1, ..., m
1s determined by the system of m nequalities:

Zm]( I;- k) E ; )) >0,j=0,L..m jzk )
The domamn 1s determined from condition:
X, = Xi X, (6)
k=1
By introducing new variables:
y,:&Il(i):M,izl,z,. ,m (7)
Py pyWI(x/S,)

1e., mapping the points of the sample space to the
m-dimensional likelthood ratio domain, we can write the
inequalities in the form:

(8)

[1s

(1), 200, =01, .,m, j#k

The domain defined by the system of inequalities
(Eq. 8) is determined by the intersection of planes in
an m-dimensional space.

Depending on which of the m non-overlapping
regions of the space defined by the system of m
inequalities, the solution of the system place into, one of
the (m+1) solutions is taken, each of which corresponds
to one of the regions of space and the true state of the
object is determined.

This decision algorithm 1s valid for the case when the
hypotheses are far. The algorithm for solving the case
when the hypothesis 1s close 13 now at the development
stage. Figure 3 shows the algorithm of the model. The
definition of sustainability is achieved through a unique
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Fig. 3: Algorithm for applying the method of calculating temporal stability on the feedback response

evaluation of each stage. The forecast in the normal state
15 a stage to identify threats and control the system’s
vibes in the time perspective.

The appearance of the event 1s the triggering of
signal components about the appearance of a side
(detrimental) effect on the functional components of the
turbogenerator and its evaluation.

Anti-action actions aimed at minimizing the impact
of harmful factors of influence. Response to side effects
the launch of processes awned at recovery after side
effects, subject to elimination of side effects. Recovery
the lawmch of processes ammed at rehabilitation of the
exposed parts of the turbogenerator to the level of the
normal state.

Normal state signals from parts of the system are
within the specified limits. All parts of the system function
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normally. Figure 3 shows the model of temporal
stability for ensuring the safety of turbogenerators.

THE FORECAST OF THE TURBOGENERATOR
STATE

The prognosis of the state of a turbogenerator can be
attributed to probability model while the characteristics of
the state of a structure can be expressed in elements of
the theory of fuzzy sets (Ostroukh et al., 2014).

Tt is proposed to consider the parameters of the
turbine and the loads acting on it as random functions of
time (Akimov et al., 2016). The deterministic condition of
the marginal mequality, he replaced by the marginal
inequality with the assigned reliable probability P, during
the specified lifetime [0, T1:
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Fig. 4: Model for monitoring the temporal stability of a turbogenerator

B (t) = Bep{® ()>R ()} > P, )]

Where:
@,(t) = The parameters of the bearing capacity
R(t) = load parameters; t€[0, T]

The probability of failure-free operation taking into
account (Eq. 9) takes the form:

P(1) = Bep{Y,(t) = (DR, ()=0/t} (10)

The shortcomings in solving such problems include
“the absence of a unified system for measuring failure
factors”.

The value characterizing the change mn risk over
time is called the risk function. Tt is expressed
by the probability of failure in a relatively short
period of time:

_ D (11)
1-F(T)

H(T)

Where:
F(T) = The distribution function
f{T) = The probability density function

T = The time of the anticipated failure
1-F(T) = The probability of failure-free operation at the
tme T

H(T) = The fraction of objects that have retamned their
operability by the time T and failed during the
mterval (T, T+dT)

The probability of failure of the system F(T) in the
time mnterval (0, T) 1s determined by the equation:

F(T) = l-exp[—E f H, (T-T, )dTJ (12)

Where:

H(T) = The risk fimction for the i-th type of failure

T; = The time point after which the i-th type failure
can occur

The learming algorithm represents the work of a
neural network such as DeepLearning which consists in
adding and removing (changing) knowledge base rules
with new input parameters of the neural network which
form a new indicative space in the convolutional layer.
At each level abstract signs of a specific causal
malfunction of the turbogenerator are presented based
on the features of the previous level with a more detailed
representation. Thus, the deeper we advance, the higher
the level of abstraction. In neural networks multiple layers
are a set of levels with feature vectors that generate
output data. Based on the results of the self-learning of
the characteristic space and the recognition results new
knowledge base rules are formed (Akimov, 2011). The
model of knowledge base rules is represented as follows:

s RI:TFx1ISp(wll... AND...xnIS u(u)ln, THEN y IS
Bl..

+  R2TFx11S p(w?2l... AND...xnIS u(uj2n, THEN y IS
B2..
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Fig. 5: Coverage of the developed forecast model of the process of modeling the impact factors

The rule for the situation is as follows:

¢ Rl: IF the level of low-frequency vibrations is
significant AND the level of backlashes of the mnserts
IS significant, THEN increased rotor mismatch IS a
strong fault factor

¢« R2: TF the level of mechanical oscillations IS weak
and the level of low-frequency vibration IS weak
AND the level of temperature difference IS
significant, THEN the temperature difference IS a
strong factor for the onset of friction

ADVANTAGES OF USING THE RISK ADAPTATION
MODEL IN FORECASTING

In the case of applying logical approaches as a
diagnostic tool some knowledge should be used for
reasoning which provides explanations for the deduced
conclusions. But traditional logic has its limitations,
especially under incomplete or uncertain information.
In this case the solution of the problem becomes
the 1dentification and establishment of cause-effect
relationships. Tn such situations the use of such logical
conclusions as mductive, deductive and mference by
analogy is impossible because for their work they require
the availability of all information about the system being
diagnosed.

Therefore, when solving the problem of identifying
and establishing cause-effect relationships, an abductive
(Akimov et al., 201 2) derivation should be used to explain
the observed (or established) facts n the modeling of the
impact factors (Fig. 5).

To verify the results of the operation of the neural
net and expert opmions we use the rank correlation of
Kendall. The computation of rank correlation takes place
according to the following equation:

4 n-1 n
:1—n(n_1)R,R:Z Y [[xex]#[vi<v]]

1=11=1+1
(13)
The number of nversions formed by the values of vy,
arranged in the ascending order of the corresponding x,.
In the table “standard normal probabilities” we find the
nearest value as well as the area on the right under the
distribution curve P:

Lo =1, P=0.74

teor

We calculate the sigmificance level by the equation:
p<2P in our case p<<0.74. The reasons in this case correlate
with expert estimates.

Assuming that the exponents of the influence of the
factors x vary monotonically with time and the variance of
the indices Di{x) does not change, the method described
in ISO 10816-1 “vibration is used to predict critical
vibrational states. Momtoring of the state of machines
based on the results of vibration measurements on
non-rotating parts”.

CONCLUSION

A methodological approach is proposed for
predicting the safety of twbo generators and temporal
reliability of elements and functional assemblies of
polymer composite materials on the basis of promising
methods for estimating vibration measurements and the
chronological analysis of the results of the detection of
critical state factors,
control, under critical influence with feedback elements.
Calculations were carried out using software products
based on the methods of artificial intelligence based on
deep learning.

their operation, diagnostics and
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