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Abstract: The objective of this research is to give the explicit computation for the normal form and the
normalization mapping of a class of the nonlinear parabolic equations developed in.
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INTRODUCTION

Let us consider the class of nonlinear parabolic
equations:

{ut+Au+f(u)—0 1.1)

u(0y=1u,

where A is an unbounded linear operator of the
domain D(A) and f 1s a polynomial such that:

ip+l1
fruy=> au" > P>l azu= 0

nzi

(1.2)

In a previous work™, we constructed an asymptotic
expansion and a normal form for the Eq. (1.1). In a non
resonant case, this normal form is a linear parabolic
equation

UtrAU=0 (1.3)
In a general case, the normalization mapping
denoted by W builded in"! asscciate to a function u,
belonging to a natural space of imitial data an element
Wi(uy) of a Frechet Space 3, such that for every solution
u(t) of (1.1}, the function v(t) = W(u(t)satisfies the
following equation in $3,.
v +AVHF(v) =0 (1.4

where the mapping F(v) (defined in section 1) is a
generally nonlinear operator which involves only terms
corresponding to resonances in the spectrum of A.

Moreover (1.4) is equivalent to an mfinite system
of non homogeneous linear ordinary differential
equations, which can be (elementarily) integrated.
More precisely, the components of F can be
expressed m terms of a sequence of polynomials

Py and the operator .
i

The objective of this research is to show uniqueness
of the pelynomial P, and to give a way to compute them
by induction, although the algorithm which gives the P; is
some what complicated.

Finally, we obtained that the normal form of (1.4) is
canomnical and we characterize the expansion in terms of its
coordinates.

The application of the method to other nonlinear
equation has been made mn.

NOTATIONS AND PRELIMINARIES

Let V and H be two separable Hilbert spaces
such that

V<H with compact injection, (2.1)
V 1s dense in H. (2.2)
We denote by || and || the corresponding norms.
Congider the unbounded operator A with a rang in H
D(A) = {ueV, AucH}. (2.3

Supplying D(A) with the graph norm, A 15 then an
isomorphism of D(A) in H, so there exists a sequence

4
of eigenvalues of A

<A, <h, <., (2.4
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each of a finite multiplicity and also a sequence

{(’Di}::

orthonormal basis (in H and V) of the associated
elgenvectors.

Aw, =Aw,i=1,2,. (2.5)
The orthogonal projection in H of the linear

span(w,,...,w,) will be denoted by P, and R, denotes the
orthogonal projection in the eigenspace of /,

R0 = E(m,mk )0

A

(2.6)

Then we have

RR, =0sii*j, ReRe. ... =1 2.7)

We shall also consider the Frechet space containing H

(2.8)

of

Ab

equipped with the topology of convergence
components, the operator A and the semi-group, e
generated by A, extend to ,.

We denote by

O/ <A< o < <, (2.9)

2

The sequence of eigenvalues of multiplicity m, and
by {3(t)}.., the nonlinear semigroup defined by
S(t): V-V, u~ St (2.10)

Finally, we call resonance in the spectrum of A, the
relation:

a A Fat aL L acN,1=1, k (2.11)

We shall denote by

O<py = A<= (2.12)

The elements of the additive semi-group & generated
by AJs and k = Max kA <}

On the other hand, we define the power A* of the
operator A, for ae® and we denote by

168

vV, =D(A%) where V, =H,V, =V (2.13)
Supplying V, with the following norm
| = ‘A%u (2.14)
0
then V, is a Hilbert space.
Finally, we introduce a sequence
{Ealo
of Hilbert space such that
E..=E_ vm
with continuous injection (2.15)
¥m, V,, is close subspace of B, (2.16)

The following theorem showed some of the main
results of!].

Theorem 2.1:
1) There exists a one to one analytic mapping
W V-3,

satisfying W7(0) = 1, such that for every regular
solution u(t) of (1.1), v(t) = W{u(t)) satisfies the equation

VO+AVIOHF(v (D) = 0 (2.17)

where

E)=R.Fv)= Z R, [Pmi (vl,...,vknl )...PM(vl,...,vkﬂmD )}

Py + +|.|.nD:Ak
(2.18)
and

V=v,av,®.. €8, (2.19)

i) In(2.18), for j=1,2, . P, are E_,ND(A) value pelynomials
defined on

RH&RH®. &R, H
depending on the spectrum of and. Such that
W, (0,1,)= B (W,(u,)... W, (1,)]

where
1\Nl(]-lu) = RIWAI (0, uu)
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Moreover, if
M(X,, X, )

1s a monomial in

P, X))

of degree
m,,.... Iy

in

respectively, then

mA, +

Ay bobmy Ay =0

Furthermore if 1, 1s eigenvalue A, 1.e.,

M= Ay

i

then
P (X,,....,X, ) =X, + higher order terms in X,,..., X, ,

We recall that, the mapping W was constructed in'"
from expansion of every regular solution of (1.1), the
following theorem gives the properties of the expansion
which will be used in the present research.

Theorem 2.2: For each neN, the solution u(t) of (1.1)
admits the following expansion in H

uit) = Wue ™ F e ™ e V() (2.20)

where Wp(t) is a B, nD(A)-valued polynomial in t and

Vi(De([0,22).v)NC "({L,,02). E,ND(A)), 1,20, M=0.
This expansion satisfies the following properties:

|VN(t)|m = O(e_m“w")t) > ¥, >0, m=0.

4} =degWy ()< j-1 ,1=1,2,...N.

if Ay< g, A€o(A) anonresonant eigenvalue, then W,
is a constant int and R;W, =W,

it w=p, is not a nomresonant eigenvalue, W,
satisfies the equation

169

d

W +H AW, (D)

S W, W, Q2

By * g =1y
If A, 1s aresonant eigenvalue we have

Max (d'a, +..+d%, | (2.22)

gy ool =Hy

deg W, (t) <1+
W,

Moreover,

ReWow

for k#j and the order of the coefficient will obtained from

R, W, (0)..R, W, (0)

For any e&
W, (0.u,)=P (W1 () W, (un)) (2.23)
where P, are the polynomial defined in theorem 1.1
and W (u) = R W ,(0,u) are the components of the
normalizing mapping W.

Let [[; R.,~RHeR,He. aRH be the canonical
projection N = 1,2, ... then the range of [ [,W contains
a ball centred at 0.

Remark 2.1:

We will henceforth use the notation

S(t,u, ) w Z Wuj (t, uu)e*ujt (2.24)
T

for the asymptotic expansion (2.19).
THE ALGEBRA OF THE ASYMPTOTIC EXPANSION

Proposition 3.1: For every ueV, the asymptotic expansion
(2.19) can be rewritten as follows

S(thux~3 P (W1 (situ),... W, (S(t)u)) (3.1)
1=1
Proof: We denote k = {k.A <p};
Let, according to (2.23), has the asymptotic expansion

S(thu ~ i e "'W, (t.u) (3.2)
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Tt results from theorem 2.2

W, (0.u) =P, (W, (). W, (0] (3.3)
We also have for any t, t=0
S(t+t,,u)m ie”Jthj(t+tu,u) (3.4)
i
Hence that
S(t+t,,u) ~ ie”itw% (t,5(t, ) (3.5)

=1

By the uniqueness of the expansion (2.19), 1t follows

that

W, (1,80t )u) = ’”Jtﬂwuj (t+t,u) (3.6)
Which for t = 0, we obtain

W, (0.8(t,)u) = e‘“fﬂwu] (tu) (3.7

So from theorem 2.1, we have

W, (tu)=e"'P, (Wl(S(t)u),...,ij (S(t)u)) (3.8)

]

We deduce then from (2.23) and (3.8), the formula

} (3.9)

The next propositicn gives further properties of the P,;.

W, (S(thu)

()~ 3eW, (L) - W, (S(u)

=1

ip{

Proposition 3.2:

If 1,88 1s the eigenvalue Ay, then

P (X X Xy )= X+ Qy (X XXy, | B10)

where

d°Q, =2andR,Q, (XI,XZ,...,XL‘ ) 0o (31D

For ueV, we denote X, (t) = W, (u(t)), then for every ]

k
(D)= (A 1)1

2

(3.12)

2

Moy ot g =1

P, .P

oy
m=

170

where I, is the derivative with respect to the m®
component.

Remark 3.1: In (3.12) the polynomials are evalued at

X, (0, X, (1),
but the formula is valid for arbitrary
Xy X,

since W (0) = 1.

Proof: Part i) results from the thecrem 1.1 and'Y. Part ii)
from (2.18) and (3.9), we derive for p,e53, the Eq

d @ XX, @ XX,
dt[eu ; {Xk N%AM])EH ; {Xk ] (3.13)
+ 3T e (XX, )P (Xlx%)

By - g =l

From theorem 2.1, the Eq. (3.13) can be rewritten as

Agt e
d el ... eM'X,,
EP;[ Sty }J’_(A_MJ)R][ T
> 3 s k, (3.14)
eAltxl . enerI )
* P, .
Hoy +"§m =Hj l ey eAml tXDLI o ...,eAkm tX“"hg

Differentiation, ™, (1), k=1,2,..., withrespecttot, we
get

d
a(emctxk(t)) — Akeﬂktxk (t) ¥ eAkth (t) k= 1’ 2’ (315)

and from (2.17) we have

dX, .
dtk = X () =—A,X, — E(X(1) (3.16)
then
d .
E(eAkth(t))zka(t) :*eAktFk (3.17)
Coming back to (3.14), we deduce then
5 (3.18)

(D.P)E, =(A-u )P+

1

P

Gl

P

[s%:)

)

m= Moy o B =Hy

where the summation starts at m = 2 since F, = 0.
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CONSTRUCTTION OF THE P,
We denote by
R, =R,
ifk =k and
R, =0

otherwise.
In the other hand we set
Q. =1-R

i Hj

and setting
o o
X eRH, X; eR,H, ..

The following theorem gives the mam result
concerning the construction of the P,

Theorem 4.1: We define a sequence of polyncmials q; as

follows
q1(t):‘;{1 .
and by induction
N -n-1 d o
q(t=-20-r[(A-w)] [&)
nzl
> 4,4 (42)
By + g =1y "
if p, & alA)
or,
0 t qa,(‘E)Jr
=X ..q, R
q;(t) kﬁjnuw%m:ulqm Ao, kj{_+q%(J
-n-1 d -
1A — _ i 4.3
s (A-w)(1-R,)) (dJ x (4.3)

nzl

> (I - Rk])(qm, g, ) if u=

oy B =R

then

i} 1] 1] i}
Q= P]U[Xl,...,xkj}ta_l[Xl,...,xk])
(4.4)
+t7'P

1] 1]

where the P;; are polynomials maps in

0 0
X X,

and

0 0 0 0
PJ [X“...,ij ] = PJ,n [Xl,...,XkJ]

Proof: To prove theorem 4.1, we have need the following
algebraic lemma.

Lemma 4.1: Let L an mversible (not necessarily bounded)
linear operator in some Hilbert space H. Then for any
H-valued polynomial r(t). The equation

q =Lgtr (4.5)
has a unique polynomial solution given by
q(t) = > -DLH (4.6)

k=0

Proof of lemma 4.1: We deduce after an immediate
computation that (4.6) is a solution of the Eq. (4.5).

To proof the umqueness of g, we consider g, and q,
two polynomial solutions of (4.5), the difference q = q,-q,
is solution of equation

q =Lq (4.7)

Since q is a polynomial, then q® = 0 for n>d"q which
with (4.7) yields 0 = Lgq™" and since L is inversible, we
obtain g% = 0.

Inductively, we have q = 0, so q; = g, and we have
the uniqueness of ¢.

Let us take back the proof of theorem 4.1 and one
assumes that p €0(A).

Let us consider the equation when q; is a polynomial
of t

GO+(A-wlgm+ ¥

By * - g =H

0 o
qJ(O) = P; [Xl,...,ijj

q,, (t.q, (D=0
(4.8)
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We remark that, the Eq. (4.8) is exactly of type (4.5) and it follows that
where -L. = A-, and the second member
0 t
R, q;{t)=Xyx+ R, |q,(.q, (v dr@l3)
b= Z Doy -y, - Al -[u hﬁ_;m% A [ O ]
Moy o By =Hy
The Eq. (4.13) 1s exactly of type (4.5), or its results

It follows from the lemma 4.1 that from lemma 4.1 that

ql(t):‘z(l‘)n[(A‘“J)Tljt: > a,ed,, 9 (A-n) -"“[d

nzl +ot g = (I_RA )q :_Z(l_)n _] %
Wl nz0 (I - RAk,- dt (4.16)

and of course

Z (1, RAk, )(qOLl G )

0 0 0 0 Hoy ot Hag =K
qj(t): Pju [X1,...,Xk,}+ ‘[Pj_1 [X1,...,ijj

0 " (4.10) Finally, we deduce (4.2) and (4.3) from (4.15) and
+tJ—1pLj_1[x1,_.,xk,j (4.16).
Hence the theorem 4.1 13 competing.
To prove (4.3), we assume that Corollary 4.1: The polynomials P, are unique.
K= Ay Eola) CARACTERIZATION OF THE EXPANSION IN
TERMS OF ITS COORDINATES
and we set
We recall that, a previous work, we constructed a set
q; (1) = B; (1) + Quy q; (1) 411)  of analytic nonlinear manifolds.
where
M, ={ueV, W =.=W_()=0} (5.1
B = RAquJ'(t) = RAkJH
that are mvariant under S(t), of codimension m,+...m, and
and we have the condition
_ At
. st=0fe ) @2
Coming back to (4.8) and using (4.11), we obtain Alsosetting M, = V, u satisfies
B+ T Rfa,-q,, |50 @12) st = Ofe )
Hoa Tt TH weM, \M, & and (3.3)
and g " = O(8(thu)
Qa4 (t)+(A*P~J ](QAk]qJ) 4.13) Consequently, if ueM,,, then the expansion (3.1) takes
' the form
+3 Q[ oy v, |20
o ST~ 3 B (0,0, 0 W, (S(0W)....W, (SOw)  (5.4)
The eq. (4.12) will be integrated kizk
B,(t)=PB,(0)+ J‘; > Ry, [qnLl (T)...q% (’:)}dr (414 However, for N fixed and K,;2k, let d;; denoted the
boy tothog =hi degree of the polynomaal

172
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S B0, W (¥, W, (V)

kizk
15N

(5.5)

then it follows from 11) of theorem 2.1 that

soif veM, \M,, then we can write

vy P(0,... W, (V). W, (v)) =0
£k
JZN

[vr‘N*i—iJ (5.6

where g, 18 as theorem 2.2 1). In particular if veM M, then

_o@v

where d,; is the degree of the polynomial

&
dy + L
LAY

V- ZN: P, (W, (v),.... W, (V) } (5.7)

M
3P in Wiv).L W, (V)
1=1

Hence, the expansion (5.4) can be viewed as an
asymptotic expansion of v = S{t)u in terms of its
coordinates W (v), W (v),.....

Finally, notice that the asymptotic expansion (5.6),
(5.7) hold the trajectories but we don’t know it they are
global or not.

Remark: Present research extends to the equation with
second member such that

wrAutH(u) = g(x)

173

where g(x) is independent of time, for example:

i—?fAm+3uim+ 3uef e’ =0 Qx|0,T

a0=0, Q o=0 aQx]0,T|

where w = u-u, with u and u_ are, respectively
solution of equations

|

u,-Au+u’ =gx) QX]O,T[
w0)=u, Q; u=0 &2x]0,T[

|

We obtain the problem (1.1) with:

and

~Au,+ul=g Q
u,=0 &0

{Au =-Au+3uiu

flu)=3u_u’ +u’
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