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Abstract: Reactive Power Optimization 1s a complex combinatorial optimization problem invelving non-linear

function having multiple local minima, non-linear and discontinuous constrains.

This study presents

Attractive and repulsive Particle Swarm Optimization (ARPSO) in trying to overcome the Problem of premature
convergence. ARPSO is applied to Reactive Power Optimization problem and is evaluated on standard TEEE
30Bus System. The results show that ARPSO prevents premature convergence to high degree but still keeps
a rapid convergence. It gives best solution when compared to Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO).
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INTRODUCTION

The reactive power optimization problem has a
significant mfluence on secure and economic operation of
power systems. The reactive power generation, although
itself having no production cost, does however affect the
overall generation cost by the way of the transmission
loss. A procedure, which allocates the reactive power
generation so as to minimize the transmission loss, will
consequently result on the lowest production cost for
which the operation constraints are satisfied. The
operation constraints may include reactive power
optimization problem. The conventional gradient-based
optimization algorithm has been widely used to solve this
problem for decades. Obviously, this problem is in nature
a global optimization problem, which may have several
local minima and the conventional optimization methods
easily lead to local optimum. On the other hand, in the
conventional optimization algorithms, many mathematical
assumptions, such as analytic and differential properties
of the objective functions and unique minima existing in
problem domams, have to be given to simplify the
problem. Otherwise it is very difficult to calculate the
gradient variables in the conventional methods. Further,
m  practical power system operation, the data
acquired by the SCADA (Supervisory Control and
Data Acquisition) system are contaminated by noise.
Such data may cause difficulties in computation of
gradients. Consequently, the optimization could not be
carried out in many occasions. In the last decade, many
new stochastic search methods have been developed for

the global optimization problems such as simulated
annealing, genetic algorithms and  evolutionary
programming.

A major problem with Evolutionary Algorithms (EAs)
in multi-medal optimization 15 Premature Convergence
(PC), which results in great performance loss and
sub-optimal scolutions. As far as GAs are concerned, the
main reason for premature convergence 1s a too high
selection pressure or a too high gene flow between
population individuals. With PSOs the fast information
flow between particles seems to be the reason for
clustering of particles.

Diversity declines rapidly, leaving the PSO algorithm
with great difficulties of escaping local optima.
Consequently, the clustering leads to low diversity with
a fitness stagnation as an overall result.

Recently R. Ursem has suggested a model called the
Diversity-Guided Evolutionary Algorithm (DGEA)Y!. He
redefines the traditional mutation operator, the Gaussian
mutation, to be a directed mutation instead. The important
issue is that this directed mutation, in general, increases
the diversity, whereas normal Gaussian mutation 18 not
likely to do this, because it simply adds random noise
from some distribution with a mean of zero, normally
N(D, o%). Consequently, the DGEA applies diversity-
decreasing operators (selection, recombination) and
diversity-increasing operators (mutation) to alternate
between two modes based upon a distance-to-average-
point measure. The performance of the DGEA clearly
shows its potential in multi-modal optimization. As!
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rightfully pinpoints, the diversity measure is traditionally
used to analyze the evolutionary algorithms rather than
guide them. We are great believers of adaptive
controlling; that measuring and using different properties
of the swarm/population while running, adds significant
potential to the algorithm. We have therefore adopted the
idea from R. Ursem with the decreasing and increasing
diversity operators used to control the population mto the
basic PSO moedel. We find, it 1s a natural modification of
the PSO and the idea behuind it 1s surprisingly simple. The
modified model uses a diversity measure to have the
algorithm alternate between exploring and exploiting
behavior. We mtroduce two phases attraction and
repulsion. By measuring the diversity we let the swarm
alternate between these phases. As long as the diversity
is above a certain threshold d, the particles attract each
other. When the diversity declines below d,,, the particles
simply switch and start to repel each other until the
threshold d,,,, is met. With this simple scheme we obtain
our modified model, which we have chosen to call the
ARPSO model-the attractive and repulsive PSO.

Problem formulation: The objective of the reactive power
optimization problem is to minimize the active power loss
in the transmission Network as well as to improve the
voltage profile of the system. Adjusting reactive power
controllers like Generator bus voltages, reactive Power of
VAR sources and transformer taps performs reactive
Power scheduling.

min P = ¥'p(x,v,8) M
1=1

Subject to
I} The control vector constraints

X, € X X, @
11) The dependent vector constraints

Y, <Y <Y, £
and
11) The power flow constramt

FX, Y.8) =0 @
where

X= [Vc;a T, QC] (5)

Y =[Qg V.. 1] ©

NB-Number of buses in the system.
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8-  Vector of bus phase angles

P Real Power injection into the i® bus

Vo Vector of Generator Voltage Magmitudes

T- Vector of Tap settings of on load Transformer Tap
changer.

Q- Vector of reactive Power of switchable VAR sources.

V,;- Vector of load bus Voltage magnitude.

I-  Vector of current mn the lines.

P,- Vector of current in the lines.

Basic PSO model: The basic PSO model consists of a
swarm of particles moving in an n-dimensional, real valued
search space of possible problem sclutions™™. For the
search space, in general, a certain quality measure, the
fitness, 18 defined making it possible for particles to
compare different problem solutions. Every particle has a
position vector x and a velocity vector v. Moreover, each
particle contains a small memory storing its own best
position seen so far p and a global best position g
obtamed through commumnication with its fellow neighbor
particles. This information flow is obtained by defining a
neighborhood topology on the swarm telling particles
about immediate neighbors.

The mtuition belind the PSO model 13 that by letting
information about good solutions spread out through the
swarm, the particles will tend to move to good areas in the
search space. At each time step t the velocity 1s updated
and the particle is moved to a new position™. This new
position is simply calculated as the sum of the previous
position and the new velocity:

®(tHl) = =)+ ult+l). @

The update of the velocity from the previous velocity
to the new velocity 1s, as implemented in this study,
determined by:

Bt + 1) = w5(t) + dy(p(h) - %(0) + by(p(t) - =(1), &)

where ¢, and ¢, are real numbers chosen umformly and at
random in a given interval, usually [0,2]. These values
determine the significance of p(t) and g(t), respectively.
The parameter  1s the mnertia weight and controls the
magnitude of the old velocity 1(t) in the calculation of the
new velocity U(t + 1.

The modified model-ARPSO: We define the attraction
phase merely as the basic PSO algorithun. The particles
will then attract each other, since in general they attract
each other in the basic PSO algorithm because of the
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information flow of good solutions between particles’™.
We define the second phase repulsion, by inverting the
velocity-update formula of the particles:

v(t+1)=mv (-0, (p(t)- x(£)—0, (g(t)- x(t). ©

In the repulsion phase the individual particle 1s no
longer attracted to, but instead repelled by the best
known particle position vector g(t) and its own previous
best position vector p(t).

In the attraction phase the swarm is contracting and
consequently the diversity decreases. When the diversity
drops below a lower bound, d,, we switch to the
repulsion phase, m which the swarm expands due to the
above inverted update-velocity formula (9). Finally, when
a diversity of d, is reached, we switch back to the
attraction phase. The result of this is an algorithm that
alternates  between  phases of exploiting and
exploring-attraction and repulsion-low diversity and high
diversity. The pseudo-code for the ARPSO algorithm 1s
shown below,

Program PSO

1mt();

while not done do
Set direction();,
Update velocity();
New position();
Assign fitness();
Calculate diversity(), // new!

// new!

Function set direction
If (dir > 0 &-&- diversity < dLow) dir =-1;
If (dir < 0 &-&- diversity > dHigh) dir = -1,

The first of the two new functions, set direction
determines which phase the algorithm is currently i,
simply by setting a sign-variable, dir, either to 1 or -1
depending on the diversity. In the second function,
calculate diversity, the diversity of the swarm (in the
pseudo-code stored in the variable diversity), is set
according to the diversity-measure:

3B, P, (10)

. . 1
diversity (S):W. )

where 3 is the swarm, IS/ is the swarmsize, [Llis the length
of longest the diagonal in the search space, N is the
dimensionality of the problem, P, is the j’th value of the
1"th particle and P, is the j’th value of the average point P.
Note that this diversity measure 1s mdipendent of
swarmsize, the dimensionality of the problem as well as
the search range m each dimension.
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Table 1: Optimal control values

ARPSO PSO GA
VGl 1.05 1.06 1.05
VG2 1.03 1.04 1.04
Va3 1.01 1.01 1.02
V& 1.01 1.02 1.00
VG5 1.07 1.09 1.08
VGo 1.08 1.08 1.08
T, 0.99 0.98 0.97
T, 0.95 0.95 0.94
Ts 1.00 1.00 1.00
Ty 0.94 0.93 0.93
Table 2: Parameter sensitivity analysis of IEEE 30 (100 trails)
TEEE

Method Compared item 30 bus Time (sec) Iterations
ARPSO Min. loss 2.4769 8.227 178

Avg. loss value 9.4792
PRO Min. loss 9.4911 12.425 225

Avg. loss value 9.5001
GA Min. loss 9.4971 15.771 250

Avg. loss value 9.5114
Table 3: Parameter sensitivity anatysis of TEEE 30 (100 trails)
Wi o}
Wi 1.0 1.5 2.0 2.5 3.0
0.9 Avg 9.4799 9.4827 9.4827 9.4827 9.4827
0.4 Min 9.4769 9.4818 9.4817 9.4817 9.4817
2.0 Avg 9.4827 9.4826 9.4826 9.4823 9.4825
0.9 Min 9.4818 9.4818 9.4818 9.4817 9.4817
2.0 Avg 9.4827 9.4827 9.4827 9.4827 9.4827
0.4 Min 9.4819 9.4819 9.4819 9.4819 9.4819

W =Weight function for velocity of agent, C; = Weight co-efficient for each
term

Fmally, the velocity-update formula, Eq. (9) 1s changed
by multiplying the sign-variable direction to the
two last terms in it. This decides directly whether the
particles attract or repel each other:

vt +)=cav (t)-0, (p(t)— x(t) -0, (g(t)- x(t)). (11)

Algorithm for RPO using ARPSO: The proposed RPO
algorithm using the ARPSO can be expressed as follows:

Step 1: Imitial searching pomnts and velocities of agents
are generated.

Step 2: Ploss to the searching points for each agent is
calculated using the load flow calculaton. If the
constraints are violated, the penalty 1s added to the loss
(evaluation value of agent).

The fitness function of each particle 13 calculated as:

NG NL .
£, =P +aX QO + YV in=12.N, - (12
1=1 1=1

n

o, P
=8

penalty factors
total real power losses of the n™ particle
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Table 4: Line data-30-bus system

Branch No. From To Rip.1u) Kipuw Y/ 2(p.u) Linephase angle limit (deg.)

1 2 1 0.0192 0.0575 0.0264 5.0

2 1 3 0.0452 0.1852 0.0204 17.0

3 2 4 0.0570 0.1737 0.0184 7.0

4 3 4 0.0132 0.0379 0.0042 35

5 2 5 0.0472 0.1983 0.0209 15.0

6 2 6 0.0581 0.1763 0.0187 7.0

7 4 6 0.0119 0.0414 0.0045 2.5

8 5 7 0.0460 0.1160 0.0102 5.5

9 6 7 0.0267 0.0820 0.0085 6.0

10 6 8 0.0120 0.0420 0.0045 2.0

13 9 11 0.0000 0.2080 0.0000 4.0

14 9 10 0.0000 0.1100 0.0000 4.0

16 12 13 0.0000 0.1400 0.0000 4.0

17 12 14 0.1231 0.2559 0.0000 5.0

18 12 15 0.0662 0.1304 0.0000 3.0

19 12 16 0.0945 0.1987 0.0000 4.0

20 14 15 0.2210 0.1997 0.0000 2.5

21 16 17 0.0824 0.1932 0.0000 2.0

22 15 18 0.1070 0.2185 0.0000 2.5

23 18 19 0.0639 01292 0.0000 1.5

24 19 20 0.0340 0.0680 0.0000 3.0

25 10 20 0.0360 0.2090 0.0000 4.0

26 10 17 0.0324 0.0845 0.0000 2.0

27 10 21 0.0348 0.0749 0.0000 2.0

28 10 22 0.0727 0.1499 0.0000 2.0

29 21 22 0.0116 0.0236 0.0000 1.5

30 15 23 0.1000 0.2020 0.0000 3.0

31 22 24 0.1150 0.17%0 0.0000 35

32 23 24 0.1320 0.2700 0.0000 3.0

33 24 25 0.1885 0.3292 0.0000 2.0

34 25 26 0.254 0.3800 0.0000 2.0

35 25 27 0.1093 0.2087 0.0000 2.5

37 27 29 0.2198 0.4153 0.0000 3.5

38 27 30 0.3202 0.6027 0.0000 5.0

39 29 30 0.2399 0.4533 0.0000 4.5

40 8 28 0.0636 0.2000 0.0214 4.0

41 6 28 0.0169 0.0599 0.0065 3.0

Table 5: Transformer data-30-bus system

Branch No.  From To Rip.u) Kipuw Tap Tap max Tap min Tap step

11 6 9 0.0000 0.2080 1.0155 1.1000 0.9000 0.0250

12 6 10 0.0000 0.5560 0.9629 1.1000 0.9000 0.0250

15 4 12 0.0000 0.2560 1.0129 1.1000 0.9000 0.0250

36 28 27 0.0000 0.3960 0.9581 1.1000 0.9000 0.0250
16_ - - n f n
144 —— PSO Qlélj’n _ QG,mm QG,] 1 QG,] < QG,mm . (1 3)

Qé,J- QG,max lf Qg] > QG,max

V|~ Vi 3|V 5V ()

V limn _ ‘ Lj L.max * L, max

0 otherwise

0 50 IIOO . 1I50 200
lerations Step 3: Pbest 1s set to each mitial searching pomnt. The
Fig. 1. Comparative study of Convergence characteristics initial best evaluated value (loss with penalty) among

of IEEE 30 Bus system with ARPSO, PSO and GA  pbests is set to gbest.
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Step 4: New velocities are calculated using Eq. (7).

Step 5: Update the velocity from previous velocity to the
new velocity using Eq. (8).

Step 6: To new function applied.

Lsetdirection

ii. calculateDiversity to control swarm.
Step 7: Ploss to the new searching points and the
evaluation values are calculated.

Step 8: If the evaluation value of each agent is better than
the previous pbest, the value 1s set to pbest. If the best
pbest 1s better than gbest, the value is set to gbest. All of
ghests are stored as candidates for the final control
strategy.

Step 9: If the iteration number reaches the maximum
iteration number, then stop. Otherwise, go to Step 4. If the
voltage and power flow constraints are violated, the
absolute violated value from the maximum and minimum
boundaries is largely weighted and added to the objective
function (1) as a penalty term. The maximum iteration
mumber should be determined by pre-simulation. As
mentioned below, PSO requires less than 100 iterations
even for large-scale problems.

SIMULATION RESULTS

NB =30, NL = 41, NG = 6, NTR = 4 Population size = 50
dy,,, = 0.01, dyy, = 0.1

NOMENCLATURE

NB = total no. of buses, NL = total no. of load buses,
NG = total no. of generator buses

TR =total no. of transformers, VG = generator voltage V,
1s a vector of generator bus voltages.
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Q, 1s a vector of switchable VAR sources and T is a vector
of tap settngs of on-load tap changing (OLTC) of
transformers.

Q, 1s a vector of reactive power generations of the
generator buses and V is a vector of load bus voltages.
Table 1, 2, 3 are simulation Tables,

4.5 are data Tables.

CONCLUSION

In this study ARPSO algorithm has been developed
for determ ination of global optimum solution for reactive
power optimization problem. The performance of the
proposed algorithm demonstrated through its evaluation
on TEEE 30 bus power system shows that ARPSO is able
to undertake global search with a fast converges rate and
a future of robust computation. From the simulation study
it has been found that ARPSO converges to the global
optimum than PSO and GA.
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