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Abstract: A simple control law based on the theory of backstepping is proposed to control and to track a
Lorenz chaotic system to any deswed trajectory. The backstepping design is a step-by-step approach and
consists of a recursive procedure, mterlacing the choice of a Lyapunov fimetion with the design of a virtual
control at each step, at the last step, the true control is obtained. Strong properties of global and asymptotic
stability can be achieved. A major advantage of this method is that, it has the flexibility to build the control law

by avoiding cancellations of useful nonlinearities.
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INTRODUCTION

Since the early 1990's, the problems of control of
chaos attract attention of the researchers and engineers.
Numerous publications have appeared over the recent
decade. It seems that T. L1 and J.A Yorke were the first
authors, who 1n 1975 mtroduced the term chaos or, more
precisely, deterministic chaos!”, wich is used widely since
then. Various mathematical definitions of chaos are
known, but all of them express close characteristics of the
dynamic systems that are concemed with supersensitivity
to the initial conditicns!!. Recently, great attention has
been given to chaos and control, Many researchers had
proposed methods to control chaos, (Ott),( Ott and All),
used the backstepping as a new frameworlk for nonlinear
control design, which is a systematic design approach for
constructing both feedback control laws and associated
an adequate choice of the Lyapunov 's functions,
permitting to guarantee the stability of the system!.

In*? we found, several nonlinear controllers
based on the theory of backstepping were designed and
applied to different systems such as®* the 3rd order
phase-locked loops, collpits oscilator for controlling
the undesirable unstable behavior and pulling the
PLL back to the in-lock state, n™ a backstepping
design 1s proposed as a techmque for controlling
Lorenz chaos but in it 's thermal convection model
(which is obtained from the Lorenz system by substituting
for x,-r, under the assumption that r = const, p= 1, foru
0 and O{r{l. Based on recursive application of
Lyapunov’s direct method, the design enables to drive
the chaotic motion towards any desired trajectory. Jinhu!™
described applied the linear feedback techniques
(backstepping), to control chaos in Lu system, the
effective observers are provided to identify the
unknown parameters of Lu system and then the
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simple feedback fimctions are designed for controlling
Lu system. Also, the proposed method can enable
the controlled Lu system to approach any desired
points or periodic orbits.

Control law based on backstepping design: Backstepping
is a method based on linearization by feedback,
eliminating all the non linearity of the system, it gives
more flexibility to the designer and robustness is
obtained" .

Let us consider a Lorenz chaotic system under 1its
parametric form:

y=f{x),xcR" (1)

With the control parameter values:
o=10,r=28 =3 (3)

X =—0%x —Xx,)
X1=—X, ¥X,+r*x —X, (2

X=X, ¥X, - B¥x, T
¥y=x

The system presents a chaotic behavior and has a
three unstable equilibirium points.

X =(0,0,k,)

X =0k, k. k)

X =,k k)

k =r—Lk,=B*(r-D

“4)
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For obtaining the 'strict feedback’ form, we translate
the origin of the system in Eq. 2 to the set point x,,, we
obtain the following system:

X =10%{x, —x,)

x2=(x —X,) —X*(0—x,) )
=9% (X, —%x,)-3%x;tx,tu
Whereu= ~/b*(-1)+pu (6)

The objective of the control law 1s to have the out
put y(t)— 0 when t— = (7).

We treats the system as three cascaded subsystems,
each one of them with only one input and only one output
and during the process a change of variable 13 done:

7 =d(x) (8)

First step, Let us choice:

am ©)
zi=x1=—10x, +10x, (10)

The virtual control is:
X, = 7, + (%) (1)

¢, (x,) is the stabilizing function for the first subsystem, z,
is the new variable.
¢, (x,) is chosen such as the Lyapunov function V,
for the first subsystem is
v, =122} (12)
and its derivative in- time:
Vi=z z =z (-10x, +10x,) (13)

=—10x,’+10x,x,

becomes definite negative.

So e (x) =02 =X, (14)
and

x1 =—10x, +10z, (15
Second step,
We are begining with:

7r=X2=(X, —%,)—(9+x,)x, (16)
=(x, —z,)—(9+x,)x,(16)

The virtual control is choosen as:

X3 = 7 Te(x), X;) (17
o, (%, x,) 18 the stabilizing function for the second
subsystem, z, 1s the new variable.

o, (%, %,) 18 chosen such as the Lyapunov function V, for
the subsystem 2 is,

V, =V, +1/2z} (18)
And 1ts derivative m tume 1s:
Vi=Vi+z,2; (19

=—10x, +z,[10x, + X, =2, — (9+ x,)x,]

Becomes defimte negative.

Sora, (%, %) = 11x,/9+x,) (20)
And
= 10x - 2, (21)
Third step,
Z3 =X, — 0, (X_”Xz)
Z3:X3_052(X1,X2) (22)
=[00¢, +x,) =3%, + XX, + u]w
(9+x,)

The virtual controlu i1s choosen such as the Lyapunov
function V, for the subsystem 3 is,

V, =V, +1/27, 23)

So its derivative n time 1s:

Vi=Vat 2z, 72
11
9x, —3z 73l7u 24
: P70+ X,
=—10x; —Z +z,
—997(_1(0;‘ ; 1)?X2) L AO+x,)
1

becomes definite negative, if u is chosen as:
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335, g (10, +10x,)

(25)
9+x,) ©+x,)

9

u =—9x,

u represents the control law for stabilizing the system
Eq. 5in the origin.
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Chaotic behavior and stabilizing system in time wave

Control law

Variation of control law in time

Tracking of system based on backstepping design: In
the tracking problem of non linear system, the
objective of the control is not only to stabilize the system
globally, but also to force its output to track any desired
trajectory.

We have following the same steps on before,
excepted, one obtains the error between the output of the
second subsystem and the reference signal:

X740y, 27
with the Lyapunov function:
vV, =172z, (28)
The choice of o, for V, Becomes definite
negative is:
7YY (29)
X =0. =

3 2

O+x,)

And the tracking law is given as:
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(~10x, + 10x2)(9 —y - y,} (3;;1 ~3y 2y, y]
©+x,) -
7Yr(9+ Xl ) 79X1

u=-

9+x,)

(30)

And then 1 x tracks any desired reference signal v,.
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Variation of control law of tracking system in time

CONCLUSION

In this study, we showed that Lorenz's chaotic
system can be transformed into a class of nonlinear
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“strict-
feedback” form, then a backstepping process has been
used to drive the output to asymptotically equilibrium
point and totrack it to any arbitrarily given reference
signal, strong properties of global stability and
asymptotic tracking have been achieved in a finite number

systems in the so called non-autonomous

of steps, however 1t has certain drawback one of them 1s
that for high order systems, the nonlinear expression of
the controller becomes increasingly complex.

REFERENCES

Andrievskii, BR. and A.L. Fradkov, 2003. Control of
Chaos: Methods and Applications, Automation and
Remote Control, 64: 673-713.

Harb, AM. and MLA. Zohdy, 2002. Using non linear
chaos and bifurcation control recursive controller.
Nonlinear Analysis: Modelling and Control, 7: 37-43.
Ahmad M. Harb, 2002, Chaos contrel of 3rd order
phase-locked loops using backstepping nonlinear
controller, Complexity Intl., pp: 1-7.

Guo Huw Li, Shi Ping Zhou and Kw Yang, 2003.
Controlling chaos in Colpitts oscillator, The TEEE
International ~ Symposium  on  circuits  and
systems,ieeexplore.ieee.org/iell 5/8570/27140/01
25756.pdf.

Saverio Mascolo. Backsteppmng Design for
Controlling Lorenz Chaos, Proc of the 36th TEEE CDC
San Diego, CA., pp: 1500-1501.

Tinhu Lu A. and B. Junan Lu. Controlling uncertain
Lu system using linear feedback, /Institute of
Systems Science, Academy of Mathematics and
System Sciences, Chinese Academy of Sciences.
Backstepping-based Techmiques. Department of
Automatic Control, Lund Institute of Technology,
www.control.lth.se/people/personal/rjdir/Rice
University/Backstepping. pdf.

Rodolphe Sepulchre, Mrdjan Jankovie and Petar
Barabra, 1996. Califormia,
fluingv.ucsd edwkristic/preface2.ps.

Kokotovic  Santa
Miroslav  Krstic, 2002. Nonlinear Backstepping
Designs and Applications: Adaptive, Robust and
Optimal. Tutorial Workshop, ASCC, Singapore.



