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Abstract: In this study, we show the interest of multiple model modelling approach to apprehend nonlinear
behaviors of physical systems. From experimental data, we develop a model of simple structure which can be
exploited in many Fields such as control, diagnosis or for the design of observers. An application on a turbojet

plane is presented.
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INTRODUCTION

The use of mathematical models in engineering
sciences has grown with electronic and power computer
development, especially in aeronautic and more precisely
in aircraft engine's manufacture. These models are used in
order to calculate dimension, to design numeric control
systems, or to design diagnosis algorithms. To underline
our industrial interest, we work with a 2-shaft engine
support.

Turbojet engine's principle is the ejection of gas mass
faster than the aircraft speed. The thrust depends of: the
difference between inlet and exit gas speed, the gas mass
fow n the engine, the difference between inlet and exit
static pressure area. Therefore the engine is the assembly
of the followmg components (Fig. 1):

* Fan(l),

+  Low Pressure compressor (LP) (2),
*  High Pressure compressor (HP) (3),
+  Burner (4),

¢+ Turbine HP (5),

+  Turbine BP (6),

+  Nozzle (7).

The fan controls the inlet air fow. The two stages of
the compressor allow an easier pressure burner adaptation
i whole fight conditions. Burner warms up the mixed gas
air and fuel. The gas speed 1s then increased and a part

Fig. 1: Section of turbojet engine

of the power 1s used by turbines in order to drive
compressors 1n rotation. The gas 18 also accelerated mto
the exhaust nozzle after the turbines.

A turbojet engme includes a lot of equipment in order
to know its states and to control it. The knowledge of the
states (LP and HP speed, pressure and temperature at
different stages) 1s donme by means of sensors and
actuators allow to control it to reach the expected thrust.
Principal actuators are: fuel metering valve, variable stator
valve (which modify the geometry of some compressor
stages in order to avoid the surge phenomena) and bleed
valve (which takes air to avoid the surge phenomena).

From the middle of the sixties to the beginning of the
seventies, we could note an interest in mathematical
modelization of aircraft engines to design control systems.
In 1971, Mueller, designs a linear model of a 2-shaft
aircraft engine which allows to Find overall conditions of
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stability, observability and controllability. At the end of
the in the beginning of the eighties,
appear the First works in control (Trevino and Olemer,
2003; Harefors, 1997) and diagnosis (Savy, 2003;
Wu and Campion, 2004) using mathematical models in

seventies and

order to estimate directly in real time engine's outputs like
m (Wells and Dsilva, 1977) or to simulate the engine's
outputs like in (Dsilva, 1982). In the middle of the 80s,
numerical control systems appeared and then the use of
models became necessary.

Different kinds of engine's model exist: static
thermodynamical models, dynamic thermodynamical
models, correlated engine sensor measurement models
and linear models in different operating points. Static
thermodynamical models are a thermodynamical and a
thermical phenomena representation of the different
stages of the engine. Each stage is linked to the next by
static continuous equations. Dynamic thermodynamical
models are dynamic representation of thermodynamical
and thermical phenomena (like thermical exchanges)
between the following stages: HP compresser, burner and
HP turbine. Correlated measurement models are often
polynomial representations of a series of measurements.
Linear models are linearization of the engine's equations
at different points.

Thermodynamical models are usually used to
calculate the dimensions of the engine's components in
order to satisfy customers expectations and also to design
and simulate control systems. The two others are usually
onboard models used for diagnosis algorithms like in
(Mueller, 1971).

Aurrcraft engine 1s a strongly non linear system and its
continuous representation is difficult. For that, there are
a lot of table and switch in the above models description.
These tools are not continuous and then could be source
of troubles either n control algorithm robustness or in
decision logic in diagnosis. Moreover many efficient
control and diagnosis methods have been developed in
continuous time. The present study aims to establish, on
the basis of a nonlinear model which parameters are

Table 1: Values of the parameter functions

defined by a lookup table, a global continuous model. Our
research basis is a 2-shaft aircraft engine illustrated by
Fig. 1, the units of the variables are not given for reasons
of conFidentiality. The model structure 1s represented by
two dynamical equations:

% =K, (%) & -y, RED+K; (%) 0-uR{x,) 1)
%, =K, x) &, -y, R(xD+E,x) (u-uR{x))

and 4 output equations:

=%

Y. =%

¥y = Ks(x ) (x, -y, R )+ Ko (% )(u—uRE ) + y,R(x,)

¥Ye= K7 (Xl )(Xz - YZR (X‘l N+ Ka (X‘l Ju- UR(X1)) + Y4R (X1)
(2)

In these equations, %, is the LP compressor speed, x,
15 the HP compressor speed, y, 1s the static pressure at
the output of HP compressor, v, is the temperature in the
burner and u 1s the fuel fow.

The parameter functions deFining the gains K(x,)
and the offsets y,R(x,), v;R(x,), v,R(x,) and uR(x,) are
given for eight different operating pomts. Their values are
collected in Table 1. In the sequel, the parameter functions
v.R(x)), v.R(x,), v, R(x,) and uR(x,) will be also denoted
Kox)), Kjo(x)), K (%) and K ,(x,), respectively m order to
be able to designate all the functions globally.

The various parameter functions they vary according
to the state variable x,. The numerical values of these
gains are given by a cartography for 8 operating pomts,
as one can see it on the Table 1. Then discontinuities of
this look-up model are not easily exploitable either in the
control or diagnosis Fields. Moreover, the methods
developed in these two Fields are based preferably on
continuous analytical models between the outputs and
the state variables. Then, our objective is to obtain a valid
total model on all the operation range. For that, it is
preferable to represent thus look-up model by an analytical

X1 33.58 49.30 59.60 64.46 75.02 79.89 89.19 93.48
K 0.8674 1.5000 2.2186 2.2989 1.8728 1.4068 1.2300 1.1320
K, 0.04799 0.06927 0.07049 0.07255 0.07065 0.06575 0.06792 0.06931
K -0.3266 -0.7633 -1.2828 -1.400 -1.1087 -0.9261 -1.1446 -1.2441
K, 0.04884 0.04691 0.04237 0.03972 0.03521 0.03215 0.02889 0.02862
K 0.0615 0.1001 0.1416 0.1445 0.0998 0.07525 0.06125 0.05812
Ks 0.00253 0.00323 0.00316 0.00303 0.00291 0.00310 0.00305 0.00306
K; -9.23 -8.55 -9.83 -9.54 -5.625 -3.500 -1.656 -2.162
K. 1.9926 1.1441 0.8702 0.7406 0.5477 0.4710 0.3578 0.3177
¥ar 56.94 69.09 74.25 76.80 82.50 86.93 93.11 95.03
¥ar 2.667 4.225 5.543 6.452 8.6042 10.01 12.76 14.06
Yar. 630.0 649.3 680.5 712.5 776.5 824.2 899.5 930.2
Ug. 155.1 259.0 364.3 451.6 675.9 840.4 11783 1346.9
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model. The multiple model approach can apprehend
nonlinear behaviors, while keeping the simplicity of the
linear models. The proposed modelling approach is
carried-out in two step:

First step: The parameter functions Ki(x,),1=1, ..., 12, are
modelled using a multiple model approach, based on the
look-up table described in Table 1. Next, using these
analytical nonlinear models, the global nonlinear model of
the aircraft engine is established.

Second step: This global nonlinear analytical model 1s
then linearized around some operating points in order to
establish a multiple model of the behavior of the engine.

MULTIPLE MODEL APPROACH

The multiple model representation 1s an approach for
modelling nenlinear dynamical systems (Johansen and
Foss, 1993; Murmray, 1997). The underlying idea is to
apprehend the global behavior of a system by a set of
local models (linear or affine), each local model
characterizing the system's behavior in a particular zone
of operation. The local models are then aggregated by the
mean of an mterpolation mechamsm. The motivation of
this approach comes from the fact that it 1s often difficult
to design a model which takes mto account all the
complexity of the studied system.

Like any modelling problem, the identification of a
multiple moedel leads to the search of the model structure
and the estimation of its parameters. In the followmg
section, one will be mterested m the parametric
optimization which consists in estimating the parameters
of the activation functions and those of the local models.
The considered multiple model is defined as follows:

X(t) = ZH, (A x(D+Bult)+D;)
:l (3)
y(t) = Zui (EONCx(+Liu(t)+5)

where x(t) € R" 1s the state vector, u(t) €R™ 1s the input
vector and y(t) €R® is the output vector. For the 1 * local
model A1 eR™™ 1s the state matrix, B1 eR”™ and L1 €R™® are
the input matrices, Ci €R™ 18 the output matrix and (D1,
S1) eR°>R" are constant matrices.

The activation functions p(E(t)), 1= {1, ..., M} have
the following properties:

im(@(t) -1

0<p (E(E) <1V, €41, ..., M}

“4)
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where E(t) represents the decision vector depending on
the mput and/or the measurable state variables. The
number of local models (M) depends on the desired
modelling precision, the complexity of the nonlinear
system and the choice of the structure of the activation
functions.

A multiple model can be obtained by identification
(Gasso et al., 2000), by linearization of known nonlinear
model around various operating points (in this case each
local model is an affine T.TT system due to the presence of
the constant of linearization) (Tohansen and Foss, 1993;
Murray, 1997) or by convex polytopic transformation
(Tanake et al., 1996, Wang et al., 1996).

Representation of the parameter functions by multiple
models: The Fust step of the proposed modelling
approach consist to approximate the parameter functions
Ki(x),1= {1, ..., 12} using a multiple model approach on
the basis of the given look-up Table 1. The analytical
formulation of each gain is given by the following
equation:

R.(x) :Zuu(xl)(auxl-s-ﬁu), i=qL..120 (5

Where Iz'_l(xl)
parameter function K;(x;), M 1s the number of local models,
o; and [3; are parameters to be identified by a parametric
optimization method. ij(x,) represents the activation

represents the approximation of the

function of the j th local model which ndicates the degree
of activation of this model in its operating zone, the index
iis related to the i ® gain. According to the number M of
the local models, the activation functions take different
form. For M = 2, we have:

“(x,~b
(%) = exp[("lz””jand %) = 1, 0x,)

il

If M = 2, the activation functions are as follows:

1 -(x,-by)’*
W, (%)=, W, (x,) = exp{i1 2
1+ exp T R
Xl'bn
withl<j<M
1 W, (%)
W (%) = —————, 1, () =
-a
1+ exp| —M—
p[xfb,MJ ;Wu (x,)
with 1<j<M
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Table 2: Comparative table of the criterion J;

M I, I I L I I,
4 1:1210°° 1:39 1077 1:6107¢ 221074 8471077 2:7 1073
3 124107 1:94 1077 6:86107° 24107 1:3107° 0.012
2 1107 4:4 1074 2:78107° 321073 1:5107* 0.035
M Is I Jo Jin Iy Ii
4 74 107 4:810°° 4:510°° 1610°¢ 4:310°° 2:2 1076
3 1107 1:8107F 1:8107° 2:910°° 5:1107¢ 7107°
2 2:610~* 1:6 1074 4:5107° 1:210°7 1:4107° 7:110°¢
Table 3: Number of local models retained for each parameter function g (x )
K1 K2 I3 K4 K5 Ké K7 K8 K9 K10 K11 K12

M 3 3 3 2 3 3 3 2 2 2 2 2
Table 4: Parameters o and 35 of the local models
Fonction R(x) o iy et Pu P Pa
K1(X1) -0.04047 -0.00037 0.11230 5.0588 1.2314 -5.8506
KZ(XI) -0.00003 0.00027 0.00134 0.0751% 0.0424 0.00031
Kz(x1) 0.02394 -0.02435 0.028317 -3.040405 1.13799 -0.6829
K4(X1) 0.00047 0.00085 - -0.0234 0.04117
f{j (x,) -0.00404 -0.00123 0.00234 0.4189% 0.1777 -0.02158
K, (x,) -0.000049 -0.000002 0.000037 0.00590 0.00324 0.00122
K?(Xl) -0.4575 0.66200 -1.5222 16.5531 -14.6319 13.8271
Ko (x) -0.05779 -0.0843 - 4.0511 12.5300
Ko (x,) 8.1252 4.8809 - 855.90 -17.841
K,p(%,) 0.6718 0.6578 - 34.157 31.048
I"(“(Xl) -0.0474 0.0777 - 24.222 -0.0945
Ky (%) 8.766 8.2391 - 370.93 124.52

For each parameter function, Table 1 provides only For each  parameter function, the parameter

eight different values. If we try to represent a parameter
function described by M = 3 local models, the dimension
of the unknown parameter vector is equal to 12 (a;, By, a;,
by, j=1, ..., 3, for each 1). Therefore, the estimation of these
parameters cannot be achieved.

In fact, when implementing the model described by
(1-2) and Table 1, the practitioner uses a linear
mterpolation of data given by the look-up table. As the
purpose of tlis study essentially concems the
substitution of the lockup model by an analytical one, we
have artificially generate, using a linear interpolation
between the data of Table 1, a new table comprising
N = 50 linearly equally spaced values between x, ;. = 33:58
el X e — 93:48. The parameter estimation was done on the
basis of this augmented table. A very classical least-
squares method was implemented. For each parameter
function, the used quadratic criterion is defined as
follows:

1.(8) = %ZNZS(L 6.)’ :ZN:(KI(XI)fI"{(XI))Z (6)

t=1 t=1

where J; is the criterion to be minimized with regard to the
ith parameter vector 8, = [y, ..., @iy, Pits > Piws ity > Biws

b ... bul.

11> -

estimation was done using d ifferent number of local
models. Table 2 shows the obtained residual criteria
for M = {2, 3, 4}. Clearly tlus residual criteria are
decreasing functions of the number M of local models.

However, this table helps to do the compromise
between the complexity of the chosen model and its
accuracy.

Table 3 points out the number M of local models kept
for every function Kl(XJ fori=4{1,12}.

The parameters &, and [} of the lecal models
obtained after optimization are presented in the Table 4.
The parameters of the activation functions are
shown i Table 5 n the case of three local models (M = 3)
and in Table 6 in the case of only two local models
(M=2).

The results of identification are shown in Fig. 2. We
notice that the multiple models K,(x,) give good
approximation of the gains given in Table 1.

Nonlinear model simulation: By replacing the gains
defined in the Table 1 by their corresponding
multiple models K (x,), we obtain a nonlinear model of
the turbojet engine:

801
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Table 5: Parameters of the activation finctions

() o) 1a(%;) Loy (%) () Ua3(Xy) Uay(Xy) (%) sz (%)

ay -74.48 1.127 -0.312 4.120 0.110 -0.196 3.985 0.194 -0.691
i 38.651 80.254 58.656 75.673 96.139 36.225 73.016 88.548 43.4064
s Wsa(X)) Wsa(Xp) et (1) (X)) a3 Py(xp) (%) My (%)

ay 5.110 0.519 -0.312 T7.509 0.7488 -0.254 78.256 -0.158 -0.016
by 66.809 88.263 65.211 61.458 84.892 68.096 67.810 97.594 26.043

Table 6: Parameters of the activation functions

Ly (%) ey (%) Uy (%) My (%) 1y, (%) g (%)
ay 110.3 3846 113.06 46.97 123.35 21.87
by 47.89 63.46 22.94 11.66 25.34 20.94
N Ks(x(t) 0.05 BK.(x.(1)8 0167 Ksa(t)
0.59 0.0451 0.14
0.124
01 0.04
0.14
-0.5] 0.0351 0,08
-1 0.03 0.064
-1.5 T T T . T T y 0.025 r r r r r r . 0.04 T T T T T T 1
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 10 30 40 50 60 70 80 90 100
xift) $x(t)$ xi(t)
Iﬁ(m) and KB(XI) K‘(Xl) and K‘(Xl) K_s(Xl) and IQ(Xl)
11 ].lzs(X1) ].I31(X1) uzz()n) In 1- p.sz(Xl) ].le(Xl) j.l.sz()(l)
0.9 0.97 $pa(x)3 0.5
0.81 0.81 Spa(x1)$ 0.8+
0.7 0.71 0.74
0.6 0.61 0.6
0.5 0.51 0.5
0.41 0.41 0.4
0.31 0.31 0.3
0.21 0.2 0.2
0.14 0.1 0.1
0 T T T T T ¥ 1 0 T T T T T T Y 0 T T T t T r 1
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100 30 40 30 60 V0 80 50 100
xi{t) $x1)$ D)
pads) ) s

Fig. 2: Parameter functions and their activation's functions

%, = Ky — Ky ()] + K () {u =K, () 1100+, u®
X X X X (7) 10004
%, = Ky~ Ry 2+ B, ) u-Ro () 900
800
700
=% 6004
Y2 =% 5004
¥y = Ky ){x, — Ky (6] + Ky ) - Ryt + K () 400

- n ~ " B 300+
vy = Ko, - Ky ()] + By By )+ Ky(x,) 2004
® 5T 1 30 30 4w e
t
In order to simplify the notation, the state and the  Fig. 3: Inputu
output of the model (7-8) are already denoted by x and y
even if they are different from the original state and The Fig. 3 shows the evolution of the input u, the
output of model (1-2). Fig. 4 shows the comparison between the output vector
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Fig. 4: Approximation of the look-up medel by a nonlinear model

of the lookup model (1) and (2) and its approximate from
the nonlimear model (7), (8) (these outputs match
perfectly).

In conclusion, the proposed analytic nenlinear model
allows the replacement of the table with a continuous
model; so, during the simulation of the model any
mechanism of interpolation in tables is needless. The
synthesis of observer or controller for a nonlinear model
is often delicate, then to have an exploitable model of the
turbojet engine, we preferred to represent this turbojet by
a multiple model.

Representation of the turbojet engine by a multiple
model: The second step of the proposed modelling
approach 1s to transform the analytical nonlinear model

obtained previously in a multiple model form. This
transformation is obtained by the mean of linearization
technique of the nonlinear model (7) and (8) around
operating points (Abonyi et al., 2001; Teixeira and
Stanislow, 1999). The i® local model is obtained by
linearizing the nonlinear model around operating point x,;,
Xz . The activation functions v, are only related to the
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vifu)  vi{u) wi{u)

va(u)
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Fig. 5: Active functions v; (u), i= {1, ..., 4}

input u and are chosen of triangular form. As the several
analytical description of these activation functions is
tiresome, the Fig. 5 illustrates their structure 1 the case
of four local models. The values wi correspond to the
considered operating points.
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Table 7: Comparative table of the criterion J

M 2 3 4

J 3.257 0.810 0.688

Table 8: The three operating points

i X X U

1 65.88 66.87 344.25
2 72.37 80.43 557.01
3 90.07 85.05 1033.71

Then, the state equations of the multiple model are:

i
Ky = ZVi (WA Xy + A X, + Biu+ Dy
©

1
Xy = ZV1(H)(A121Xm1 + AR, +But D)

1=1

The structure of the output equations is copied from
that of the original model (1) and (2):

yml = Xml

¥m: = Xz
M

¥mi = E vi(u(Cy %, + Cppx,, + Eu+ Ny
1=1
M

¥ma = Zvl(u)(czlixml +CpXy, T Eju+ Ny )

1=1

(10)

The resulting matrices are (j = {1, 2} and1= {1, ..., M}):

E, = %[Isz (x, )(Xz -K, (X1))+ K, (x, )(u— K, (Xl))+ K (x )} =gy,

Hy=Hy
=1

D, = I%1 (X (%, — I&ID(XM))Jr ﬁz(xh)

(u, -~ K, (x,))-A

¥ Bllul

D, = K,(x)(x, - K, (x,0+EK,(x,)

(u, —K,(x,N—A

22i%ai Bziui

Ny = K (3,005, = K3, 0+ Ky ()00, — Ky ()

+ Kn(xn))_ meh - C121X21 —Eu

™

Ny = Ko, )00, — Ky )+ K0, 0w, - Ky ()
+ K - Cypxy —Cogxy — By
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The number of local models was chosen by Vi) v,(u) v(u)
minimizing a quadratic criterion with respect parameter 1
vector 0, function of the variation between values 0.9
given by the model (7), (8) and those given by the 0.5
multiple model (9) and (10). The used criterion is the 0.7-
following: '
0.6
L vy z 0.5
1 - m 1 1
3 e IR
t=0 i=1 Yimex ~ ¥imin
0.3
with t;is the experiment length, 8 = [X,,, X,,, U;, ..., X, Xoms 02
U], ¥: e A1 Vi i Tepresents respectively the maximal and 0.1
minimal values of the vector y, for 1 € {1, 4}. The criterion 0
I(0) (11) 15 weighted because of the great disparity 0 200 400 600 800 1000 1200
between the values of variables y,. u(t)
The method which we adopted to determine
the number of local.models is the same as the one Fig. 6: Activation functions v.(12)
employed to approximate gains. We made various
simulations changing the number M of local models A A B b
from 1 to 4. The values of different criteria are shown in A = [ ui 121} B, —[ i J’Dl —[ “j
Table 7. An Ay B, D,
We then chose M = 3 by performing a compromise 1 0 0 0
between quality and complexity. The numerical values 0 1 0 0
of the obtaned operating points are given on the C = B = » N, =
. . : C, C. E, N,
Table 8. The corresponding activation functions are : ' ' '
depicted in Fig. 6. Ciui Co Ey Ny
The structure of the different matrices A, B, F,, C, D,
and H; is the following: and their numerical values are:
A - -2.427 2323 A= -2.652  2.0442 A -3.107 1.295
'10.00223 1424 7% | -0366 1197077 | 0350 0935
[0.072 0.073 0.065
B = B, = B, =
| 0.040 0.036 0.031
[—46.146 ~7.165 93.974|
D, = .D, = .D, =
| 89.543 102.366 85.076 |
! 0 1 0 1 0
o_| © 1 o 1 oo 1
"l 0054 0145 777 | 0108 01150 7 | 0.130 0.0678
| -2.185 —9.680 ~6.752 ~6.893 | ~6.729 —2.670
0 0 0
0 0 0
E = s By = s by =
0.003 0.003 0.003
|1 0.772 0.586 0.441
0 0 0
0 0 0
1= ANy T > by = »
98 -113 9.5
12543 1471.6 1260.2
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50
0

Fig. 7

Output v, (t) of the multiple model and the
nenlimear model

60

Fig. 8:

Output y(t) of the multiple model and the
nonlinear model

Fig. 9

Output y.,(t) of the multiple model and the
nonlinear model

18004
16004
1400 1
12004
10001
8004

6004

400 T T T T T T T 1

Fig. 10: Output y,,(t) of the multple model and the

nonlinear model

Thus, the model obtained is easier to exploit than the
initial model described by the Table 1. It can be of a
particular utility for designing diagnosis method for the
turbojet based on classical techniques (development of a
multiple observer).

Simulation of the model of the turbojet: In order to check
the good accuracy of the multiple model, we simulate two
models in parallel: the multiple model 9, 10 and the
nonlmear model 7, 8 The applied mput 1s the same as the
one used to identify the parameters of the gains Ki(x1).
Figure 7-10 show the superposition of the output

vector of the nonlmear model 7 and 8 of the turbojet
and their approximation by the multiple model 9 and 10.

CONCLUSION

In this study, we showed how to build, from a
nonlinear look-up model of a physical system (turbojet
engine), a multiple model based on several linear local
models. The results of simulation show the capacity of the
multiple models to approximate the behavior of the
nonlinear system.

The mcrease of the number of local models allows to
take mto account the complexity of the system and also
allows to reach the desired precision of the global model
according to aims in view's.

The proposed modelling was carried out m two
stages: the parameter functions K(x,) are First termed into
multiple model in order to obtain an analytical nonlinear
model and next the nonlinear model is linearized to obtain
the Final multiple model.

However, 1t 1s possible to obtain the same results n
one step. In this case, the multiple model would have been
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directly given starting from the experimental data after,
having a structure being imposed. The principal
disadvantage of this last approach lies in the number of
parameters to identify which is larger than the number of

operating points chosen previously.
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