Medwen Journal of Engineering and Applied Sciences 2 (7): 1206-1212, 2007

Onlline

© Medwell Journals, 2007

Fiber Cement Composition Simulator Using Artificial Neural Networks

A C.S. Silva, °E.M. Bezerra, 'E.1.X. Costa and *H. Savastano
"Department of Basic Science, Universidade de S0 Paulo, Av. Duque de Caxias Norte,
n® 225, 13635-900-Pirassununga, SP, Brazil
*Instituto Tecnoldgico de Aerondutica, Praga Marechal Eduarde Gomes,
n® 50, 12228-900-S30 José dos Campos, SP, Brazil
*Rural Construction Group, Universidade de 330 Paulo, Av. Duque de Caxias Norte,
n® 225, 13635-900-Pirassununga, SP, Brazil

Abstract: The backpropagation algorithm was utilized to implement a fiber cement composition simulator. Six

predictors were used: Synthetic fiber supplier, content of synthetic fiber, supplier of the softwood cellulose

pulp, refinement degree of softwood cellulose pulp, content of softwood cellulose pulp and refinement degree
of hardwood cellulose pulp. The combination of the & predictors generated compositions that were used as
the Artificial Neural Network (ANN) target in relation to the variables: Modulus of rupture (1), toughness (1)
and water absorption (y,) of the fiber cement composites at the total age of 28 days that were used as the neural

network mput. The ANN performance was 97.3 % of cormrect classification with kappa coefficients varying
between 0.89 and 0.93. The results suggest that the ANN approach can be used to simulate the composite
formulation based on mechanical and physical characteristics using historical data set from experimental results.
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INTRODUCTION

Tropical and equatorial countries are known for their
plant and wood fiber production and the consequent
generation of products for commercial, agricultural and
mndustrial activities (Wood, 1997). The resulting cellulose
has considerable potential for fiber-cement production in
favorable conditions for the buildings market.

The use of vegetable fibers as reinforcement in
cement based composites has enormous potential in the
field of recycled materials for civil construction. The
optimized composites with hybrid reinforcement of
synthetic and fibers display acceptable
performance behavior when compared with fiber cement
produced with asbestos fibers (Bezerra ef al., 2006). The
high level of availability of non-conventional fibrous
material also supports their potential
throughout sustainable methods of production of
building components (Soroushian et al., 1995).

In several developed countries, cellulose fibers
derived from hardwoods or softwoods are used for the
production of cement composites. This i1s done by
adaptation of the former asbestos-cement production
processes (Savastano et al, 2003). Tn Latin American

cellulose

utilization

countries (e.g., Brazil, Colombia and Chile), new products
utilizing regionally available raw-materials and production
systems are required to meet consumer requirements in
each application area (Bentur, 198%; Heinricks ef al., 2000).
Formulation and dimensioning models aimed at the
efficient production are needed, based on industmal
processes.

Neural network methodology has been successfully
applied to many engineering processes and more recently
in cement and concrete-related research (Um ez al., 2000).
Compared with the rule-based system, the neural network
system allows a much more precise representation of
complex relationships between the inputs and the
outputs (Lippmann, 1987). A neural network can make a
generalization regarding the unknown situations based on
known experience or examples. A neural network can also
provide an output decision for unfamiliar inputs by the
generalization of the output decisions from familiar inputs.
By virtue of this property, a neural network-based system,
unlike a conventional rule-based expert system, can
handle the inexact and incomplete inputs. Even if the user
could not provide answers to some of the queries, the
system can nevertheless amrive at a recommendation
based on the available knowledge about this problem.
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In this study, we investigate the feasibility of using
a neural network as a simulator of experimental results
provided by different fiber cement compositions. The
most common and widely used model, that of multi-layer
perceptron trained by back propagation algorithm with
gradient decent, is employed.

The purpose of this research 1s to present a simulator
of fiber cement composition based on artificial neural
networks. Such a simulation can facilitate the engineering
of projects and applications by predicting and evaluating
the experimental results of the fiber-cement composition
before conducting real scale tests.

Neural network approach: Anartificial neural networks is
a computational system made up of a number of basic
processing element. These elements, or artificial neurons,
are simple and highly interconnected. An artificial neuron
receives information (signals) from other neurons, process
it and then relays the filtered signal back to the other
neurons. The receiving end of a neurons has mcoming
signals X1, X2,... and Xn. Each of them is assigned a
weight, which is given based on experience and which
may change during the traming process.

In this type of multi-layer perceptrons network, the
weighted connections feed activation only in the forward
direction from the input layer to the output layer. A three-
layered perceptron, trained by a back propagation
algorithm network, 13 able to approximate the shape of an
arbitrary nonlinear function by precisely adjusting
connection weights between neurons. The three-layered
neural network consists of an mput layer, a hidden layer
and an output layer. Each layer has a group of neurons
and the output of a neuron in one layer equals input to all
the neurons of the next layer. In the operating phase, the
user sets the values of the mput neurons and the neural
network produces the output values. In the traming
phase, the user simultaneously sets the input and
corresponding output values. Then all the weight values
are modified using the back propagation algorithm; it
performs a gradient descent method in which weights of
the connections are updated using partial derivatives of
error with respect to the weights.

In this study, the three-layered back-propagation
neural network 1z adopted to smnulate different
compositions tables from desired experimental results
(Fig. 1). There are three nodes in the input layer. These
nodes represent the modules of rupture, toughness and
water absorption. The number of nodes in the hidden
layer is chosen based on the empirical approaches.

The output of a hidden layer node is given as Hq. 1.
The output of an output layer node is given as Eq. 2.
Equation 3 shows the sigmoid activity function.
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Fig. 1: Artificial neural network architecture used to
cement composition simulation
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Where,

A, B and Crepresent the sigmoid parameters that will
control the threshold values of the artificial neurons.
Figure 1 shows a particular case of Hg. 1 and 2 with
n = 3, m = 30and k in the mterval (Wood, 1997,
Heinricks ef al., 2000) keN.

The training of the back-propagation neural network
is composed of two steps. The first step is to calculate the
results of the input samples in the forward direction from
the input to the output layer. The second step is to
correct the interconnection weights and the threshold
values of the nodes 1 the hidden and output layers. The
process moves from the output layer to the input layer.
These two steps are repeated m turmn until the desired
network traming error 1s made. Considering the gradient
search technique, the network error is related to a
minimization of a cost function.

MATERIALS AND METHODS

The matrix of the composite was composed of
ordinary Portland cement CPITF type (ABNT, 1991),
specific surface area of 600 m* kg™, carbonate filler
(specific surface area of 450 m? kg ™) and amorphous silica
{specific surface area of 22500 m? kg™ and pozzolanic
activity equal to 814 mg g"). Polyvinyl Alcchol (PVA)
fibers were used as remforcement with 6 mm of cut length
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and average 15 um diameters. Three types of cellulose
pulp were used to assist with filtering n the fiber cement
production and to assist with reinforcement n the
hardened composite: Brazilian Pimus taeda unbleached
kraft pulp (approximate Kappa number 45), Chilean Pinus
radiata kraft pulp (approximate Kappa number 25) and
bleached eucalyptus (mix of Eucalyptus saligna and
Eucalyptus grandis) kraft pulp. The Kappa number
(Appita, 1985) is an indirect measurement of lignin
content. Tt is of particular interest in the characterization
of unbleached kraft pulps. The major properties of
cellulose fibers are described in Table 1. The Schopper-
Riegler (SR) number 1s a measurement of the drainability
of a suspension of pulp in water. It is determined and
expressed as specified in SCAN-C19:65 (Scandinaviar,
1964). In an attempt to simulate the Hatcheck method for
sheeting fabrication, the pads of cement composite were
produced 1n laboratory scale by slurring the raw material
m water solution (20% of solids) followed by vacuum
drainage of the excess water and by pressing. Hardened
pads were wet-diamond-sawn with dimensions of 40x160
mm. Test specimen depth equalled the thickness of the
pad, which was in the region of 5 mm. Twenty specimens
for each formulation were subjected to wet curing for
seven days. They were then allowed to air cure until the
execution of mechanical tests which were conducted in
the same environment (BEusebio ef al., 1998).

The mechanical and physical properties evaluated at
28 days of total age were modules of rupture, toughness
and water absorption. Mechamcal behavior based on the
Rilem recommendations (49 TFR) (RILEM, 1984) was
employed using a four point bending configuration. A
span of 135 mm and deflection rate of 1.5 mm min ' were
used for all tests with an EMIC D1.30000 universal testing
machine. This machine was equipped with a load cell of 1
kN. Physical characterization followed the specification of
Brazilian Standard NBR-9778 (ABNT, 1987).

The combination of the 6 predictors generated
compositions that were used as the Artificial Neural
Network (ANN) target in relation to these variables: (y))
modulus of rupture, (y;) toughness and (y) water
absorption of the fiber cement composites at the total age
of 28 days, used as the neural network mput. The
predictors under analysis were (t,) synthetic fiber supplier
(Tapanese: 0, Chinese: 1); (t,) content of synthetic fiber
(1.2% by mass of dry raw-materials: -1, 2.4% by mass of
dry raw-materials: 1), (t;) supplier of the softwood
cellulose pulp (Brazilian: -1, Chilean: 1); (t,) refinement
degree of softwood cellulose pulp (unrefined: -1, refined:
1); (t;) content of softwood cellulose pulp (1.2% by mass
of dry raw-materials plus 2.8% of hardwood pulp: -1.4% of

Table 1: Properties of cellulose fibers and pulps
Refinement T.ength Coarseness Drainability Fines

Sample degree (mm)  (mglo0m!') (°8R) (%)

Chilean softwood

pulp Unrefined 1.85 3273 13.0 9.11
Refined 1.22 11.30 66.0 48,94

Brazilian softwood

pulp Unrefined 1.72 42.80 13.0 8.06
Refined 1.24 11.56 70.0 25.28

Hardwood pulp  Unrefined 0.70 6.92 19.0 10.97
Refined 0.68 5.77 69.0 10.95

*Percentage by mass of fibers with length under 0.07 mm

softwood pulp and no hardwood pulp in the formulation:
1) and (t;) refinement degree of hardwood cellulose pulp
(unrefined: -1, refined: 1 and ne hardwood pulp in the
formulation: 0).

The ANN was implemented in C++ language. The
algorithm used was the error backpropagation with
momentum. This strategy 1s used to improve the weight
corrections during the ANN tramning by making weight
changes m a direction that 13 a combimation of current
gradient and the previous gradient. This is a modification
of the gradient decent method, used in the error
backpropagation algorithm when some training data are
very different from the majority of the full data.

Mathematically the weight change is represented by:

W (T 1) = w (B + Aw

Fulw (O —wy (t-T1)]

4

Where AW, 1s the weight correction in real time step
t and 1s the gradient correction and p 15 the momentum
constant term.

The ANN was trained in two steps: (1) 60% of the
data set was used for training and (2) the remained 40% of
data set were used for ANN test. The targets used in
ANN traimng were vectors representing the cement
compositions. For example, the vector (1 -1 -1 1 1 0)
represents a cement composition of Chinese synthetic
fiber supplier; 1.2% by mass of synthetic fiber, Brazilian
softwood cellulose pulp with maximum refinement, 4% by
mass of softwood pulp and no hardwood pulp in the
formulation. The data set was constituted with 32
formulations vectors. Each of them had 20 repetitions,
totalizing a set of 640 experimental results.

For each of the 100 classifications performed an error
matrix was generated. From this matrix, the kappa
coefficients of agreement (Vierira and Mather, 2000) were
derived to indicate the classification accuracy of the
Artificial Neural Network (ANN). In general the
classification accuracies obtained were high, with kappa
coefficients varying between approximately 0.89 and 0.93.
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Fig. 2: Modulus of rupture x content of synthetic fiber
assoclated with refinement degree of 1.2% by mass
of softwood cellulose pulp. Vertical bars
correspond to standard deviation of average

results
RESULTS AND DISCUSSION
The ANN smnulation was tested usmg the

experimental results and by comparing the ANN
performance with the experimental data. A  brief
discussion about the experimental results will be made in
the next paragraphs.

The presence of a lngher concentration of PV A fibers
assoclated with the effect of the refinement of the
cellulose fibers contributed to the increase of the modulus
of rupture of the composites. The strong adhesion of
the fibers to the matrix reduced the pullout of fibers and
increased the Modulus Of Rupture (MOR) of the
composites at 28 days. Figure 2 depicts the variation of
the modulus of rupture with the content of synthetic fiber
associated with the refinement of the softwood cellulose
pulp (Table 1). The highest percentage by mass of
softwood cellulose pulp (t.) correlatedto a negative effect
in relation to the modulus of rupture (v,) of the
composites as indicated in Fig. 3. The Japanese synthetic
fiber (t,), the higher concentration of PVA fiber (t;) and
the high-level refinement of the softwood cellulose pulp
(t,) caused the more significant (p<0.05) increase of
the y, variable as further explained by Bezerra and
Savastano (2004).

The Japanese synthetic fiber (t,), the mcrease of the
content of synthetic fiber (t,), the refinement of softwood
cellulose pulp (t,) and the addition of hardwoed cellulose
pulp (t;) without refinement (t;) contributed to the
increase of the composite toughness (p<0.05) as
highlighted in Fig. 4 and 5. The combination of long and
short cellulose fibers probably related to more
homogeneous distribution of fibers nside the composites
with the favorable formation of multiple secondary cracks
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Fig. 3: Modulus of ruptwe x content of softwood
cellulose pulp associated with refinement degree of
the softwood cellulose pulp. Amount of synthetic
fiber equal to 2.4% by mass. Vertical bars
correspond to standard deviation of average
results
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Fig. 4: Toughness x content of synthetic fiber pulp
assoclated with refinement degree of 1.2% by mass
of softwood cellulose pulp. Vertical bars
correspond to standard deviation of average
results

during the flexural tests. The synthetic fiber content (t,)
presented a positive interaction with the refinement of the
softwood pulp (t,) (p<0.05) as detailed by Bezerra and
Savastano (2004).

Figure 6 shows that the values of water absorption,
reduced for composites reinforced with refined softwood,
are a consequence of the improved packing of the
matenial. The mcrease of synthetic fiber content (t,) led to
the higher water absorption (Fig. 7).

All experimental data can be explored in the ANN
simulator. The experimental results discussed in the
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Fig. 5: Toughness x content of softwood cellulose pulp
associated with refinement degree of the softwood
cellulose pulp. Amount of synthetic fiber equal to
2.4% by mass. Vertical bars correspond to standard
deviation of average results
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Fig. 6: Water absorption x softwood cellulose pulp
supplier associated with refinement degree of 4.0%
by mass of the softwood cellulose pulp. Amount

of synthetic fiber equal to 2.4% by mass. Vertical
bars correspond to standard deviation of average

previous paragraphs were also obtained by using the
simulator. Table 2 shows some experimental data and the
corresponding compositions. Table 3 shows ANN output
and the expected output used for test ANN. Table 4
shows a simulated composition obtained from ANN for
different desired mechanical characteristics.

The results m Table 2 and 3 show that the ANN
approaches can map the composite characteristics mto
its composition. The ANN output x, was considered: 1
when x:0.5, 0 when -0.5 <x, < 0.5 and -1 when x,<-0.5.
The ANN performance was 973 % of the correct
classification with kappa coefficients varymmg between
0.89 and 0.93.

The ANN output adhered very well to the real
composition variables. The only two exceptions shown in
Table 3 are related to variable 1 (Chinese versus Japonese
synthetic fiber). This discrepancy is due to the
heterogeneous behavior of the composite as the
incongruent results are contrary to the normal tendency
of superior mechamcal performance of composites
reinforced with JTapanese sybthetic fiber.
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Fig. 7: Water absorption x content of synthetic fiber
associated with refinement degree of 4.0% by mass
of softwood cellulose pulp. Vertical bars
correspond to standard deviation of average

results results
Table 2: Data obtained from experimental measurements and respective formulations
Formulation vectors® Experimental results®

Formulation number t t3 ty ts s i Y2 ¥

7 0 1 -1 -1 -1 -1 12.99 4.06 22.63
19 1 -1 -1 -1 -1 -1 14.05 4.20 23.54
22 1 1 1 -1 -1 -1 11.51 4.32 23.60
28 0 -1 -1 1 -1 -1 15.41 4.65 20.63

“These results represent one of the 10 repetitions of the specified formulation. ®(,) synthetic fiber supplier (Japanese: 0, Chinese: 1); (£.) content of synthetic
fiber (1.2%0: -1, 2.4%: 1); (15) supplier of the softwood pulp (Brazilian: -1, Chilean: 1); () refinement of softwood pulp (unrefined: -1, refined: 1); (#) content
of softwood pulp (1.2% plus 2.8% of hardwood pulp: -1, 496 of softwood: 1) and (1) refinement of hardwood cellulose pulp (unrefined: -1, refined: 1 and no
hardwood pulp: 0), °(v,) modulus of rupture (MPa), (,) toughness (kJ m~2) and (35) water absorption (%6 by mass) of the fiber cement composites
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Table 3: Composition obtained from ANN output and real composition used

ANN input* ANN output Real composition®

¥ ¥a Y. X X X X4 X X4 t t t ty t ts
1236 4.14 21.93 0.01 -0.87 -0.78 -0.97 -0.91 -0.86 1 -1 -1 -1 -1 1
11.79 3.95 23.57 0.67 0.76 -0.97 -0.79 -0.99 -1.01 0 1 -1 -1 -1 1
9.07 3.14 2276 0.97 0.97 0.97 -0.79 -0.98 -0.76 1 1 1 -1 -1 1
1540 552 21.33 0.1 0.69 0.78 1.02 0.98 -0.05 0 1 1 1 1 0

*(y,) modulus of rupture (MPa), (y,) toughness (kJ/m®) and (y;) water absorption (% by mass) of the fiber cement composites, °(,) synthetic fiber supplier
(Japanese: 0, Chinese: 1); () content of synthetic fiber (1.2%6: -1, 2.4%%: 1); (&) supplier of the softwood pulp (Brazilian: -1, Chilean: 1 (¢,) refinement of
softwood pulp (unrefined: -1, refined: 1); (¢;) content of softwood pulp (1.2%6 plus 2.8% of hardwood pulp: -1, 4% of sotbwood: 1) and (t,) refinement of
hardwood cellulose pulp (unrefined: -1, refined: 1 and no hardwood pulp: 0)

Table 4: Simulated composition obtained from ANN output
ANN input? ANN output

¥ ¥z ¥, b:S| X X Xq X, Xg

12 4 20 0.98 0.98 0.97 0.98 0.97 -1.02
10 3 24 -0.93 -1.02 -0.99 -1.02 -1.01  -1.02
9 5 20 0.98 0.98 -0.95  -1.01 0.997 -1.02
14 6 21 882 0.98 0.98 0.95 0.87 -1.01

#(y) modulus of rupture (MPa), (v,) toughness (kJ/m?) and (3;) water
absorption (% by mass) of the fiber cement composites

CONCLUSION

This study applied ANN methodology to develop a
cement composition simulator based on an experimental
data set. The developed ANN, trained with
backpropagation algorithm with momentum, was used to
predict the formulations from three composite
characteristics: modulus of rupture (3,), toughness (v,)
and water absorption (y;). The results suggest that ANN
approach can be used to simulate composite formulation
from mechanical and physics characteristics while using
historical data sets from experimental results. Because the
mput data used for the ANN traming was collected from
a specific experimental data set, the results presented in
this study are strictly related to this database. However,
the developed ANN methodology presented in this study
could also be used in other experimental data sets.

The main advantage of using a simulator is the
possibility to obtain a priori results about how a
determined predictor in cement composition will influence
its mechanical and physical properties.
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