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Abstract: In this research we examine the Euclidean controllability for a neutral system with a nonlinear base

given by

* % D(tx,) =ftx,, ut)) + B{Hut)

By a careful analysis of the maxunum principle, necessary and sufficient conditions for the existence and
uniqueness of optimal controls are deduced. This research is a great improvement of existing works providing

a relationship between the attainable and reachable sets.
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INTRODUCTION

Optimal controls in its simplest sense means
controlling a system 1n some “best way”, Little wonder;
mterest 1s intense in this area. The purpose of this rese-
arch 1s not unconnected with the growimng interest in the
realm (Banks and Jacobs, 1973; Chukwu, 1982; Hale and
Grux, 1971; Mlirza and Womack, 1972; Onwuatu, 2000).
For linear systems of the form:

%D(tlxt) = L{tx,) +Bhut), t=o (H

Chukwu (1982) gave necessary and sufficient
conditions for the existence and uniqueness of optimal
control. More reports for system (1) are available in Banks
and Kent (1972) and Banks and Tacobs (1973).

In (1978) Galh studied the Euclidean controllability of
nonlinear perturbations of linear functional differential
systems of neutral type. In his investigation, the base is
inherently linear and controllable and the perturbations
are assumed to satisfy some growth conditions. In
contrast to this research, our current study assumes that
fand g may be nonlinear in the case of time delay systems
with g(t,p) = 0. Mlirza and Womack (1972) studied
conditions under which the system is Huclidean null
controllable,

%D(t, x,)= L{tx,) + B{tu(t) 2

that 18 x = 0 1 definition (5). The present endeavor 1s to
investigate Euclidean controllability of the system (*) and
set ahead to obtain Optimal conditions for the system
with straightforward application to the Maximum
prnciples. Then we shall establish a relationship between
the attainable and reachable sets.

NOTATIONS AND DEFINITIONS

We consider system (*) given by

%D(tlxt) = ftx,u(t)) +B(tult) tel

x=¢ €C([-holE")=C,

Where the operator D is given by

D(t, ¢) = (o) - gt $) 3

g:[B,tl] x C, —E", t, el

f£:64] x ¢ x C{[dt,].E") > E®

are continuous functions. B 1s a continuous nxm matrix
function

Here E= (-e0,%), E" is a real n- dimensional linear
vector space with norm w C([a,b].E") is the Banach
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space of continuous functions mapping [a,b} inte B* with
the suprimum norm denoted for ¢ ([a,b], EY) by wb
Fsup(a<s<b) b (s)1D is as defined in (Daurr, 1978) If

8eE, & >0andxeC([6—h,8+c],E") -

Then for anyt €[8,8 +¢], the function x,£C is defined by

X(8)=x(t+s),-h <5 <0 (4
Only continuous function ueC([3,t,E) are
considered. We shall assume that f(t, ¢, u) is uniformly
Lipschitzian with respect to ¢ and u for any tel with
Lipschitz constant k. In the sequel C, = C, ([-h,o}, E") and
C, ([8.4], EN.

Thus f: IxC xC,~>E"and g: IxC, » C" Also, if U 1s an

open subset of T xCxC,, then v is the corresponding
projection onto TxC,. That is v = {(t, ¢}, (1, b, u) € U}.

Definition: Let v be an open subset on T x C, Let
oto.us)={yeC (Ly)ev,

|P-dp| <p. P(O) = (B) 6,—s, B[-h,0)}then giv-> B is
monatomic at zero if for any (t, d)ev, there exists s, = s
(t,d) =0, p= plt, ¢) =0,continuous in t, ¢ and a scalar
function p(t,d,u,8) defined and continuous for (t,p)ev , O
€8<8;, 0< | < p,nendecreasing in p, s such that.

p (t’ (b: HD:SD) <1= Ig(t’T) -g(tl(b) < p(tl (bau:-s) HIP_(I)”
forteE,qJe&(tl,d),u,s) and all 0 =s<s;and0<pep, (3)

Definition: Given d €E, ¢eC, we say x(8,¢) is a solution
of (*) with initial value ¢ and & if there exists

a&> Osuch that xeC{[6— h, )} &+EE™)

x coincides with ¢ on [(8-h,8] and D (t, x,) is continuously
differentiable on [(8,8 +¢]and satisfies system (%)
on{8,8 + €] . It 1s known (Hale and Grux, 1971) that under
the prevailing assumptions on D, f, g, B and u for each ¢
€ C,, there 1s a unique solution of system (0.1) with mitial
value ¢ at 8.

Definition (Euclidean controllability): The system (*) is
FEuclidean controllable if for any initial functiond £C, and
any vector x,cF" there exist some t, <€ and a control u eC
([8.t,]E™ such that the solution x(t) = (t, &,¢,u) of (*) exists
and satisfies x(t,) =x,.

Lemma 1: Let B: I-E™ be a continuous function.
Assume that f I x C,x C,~E" 13 uniformly lipschtzian, that
18

2

o, u)- tbpu| <k | o - +]u-uy|

for all tel, ¢,,$,2Cu,,u,,2C,
Then the constants t,, v can be chosen such that:

» (1v)(1+ B (OB (8.4-9)) <%
+ IB"(B'(5,t,-8) |t, k<% foralltel

Definition (Attainable set): The attainable set of system
(*) at time t. denoted by A(t) 1s defined as the set of all
those ponts u €E" for which the system can be steered in
time t by the use of all admissible controls u. that is

A () = {x(1.0, d,u), uc U}

Definition (Reachable set): By setting

EFi(t)+j: y(s)dsueU

Where y(t) = (F'(t) B(t), we call SR(t) the reachable set of
system (*) in time t. Clearly R(t)eE". Both the attammable
and reachable sets are related and they jointly contribute
1n the establishment of optimality for the control system.

Theorem 1: (The maximum principle)
RESULTS AND DISCUSSION

Theorem: A function x is a solution of system (*) through
(8,¢d) if and only it there exists a ¢=o such that x satisfies
the equation

D(t.x, )= D(8,0)+ j; f(s, xs,u(s)ds+ ©

jE B(s)u(s)ds, te[0,8] X, =)

Proof: Since D (tx,) =x(t) —g(t,x,) we deduce that, the
solution of (*) is given by

X(t):D6,¢)+g(t,xt)+E f(s,x,,uls)ds+ o

j; B(sju(s)ds,t=5)

We observe from (7) that x 1s a solution of (*) on [9,6+t]
if and only if
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X(3+0)=0()+2(t),~ h<t=d (®)
Where z(t)satisfies.

Z(t)=g{t+ 8¢, +z —g(§ c]))-s-J‘t f(s+ 0.0, + 2 ,u(s+ 0))ds

+ B oMU 8)ds,z,=0
)
We note that for t,(5,.¢),x(t,)=x, if an only if

2(t,-0) =x, -¢ (t -8) (10)

The corresponding u which steers ¢ to x, intime t, is
given by

u(t) =B (OH'[x,~0 (t, ~8)+g(8.)

~gt, ~8, ~6+2,~8]- |, [(s+8.5,+Z,u(s+ 5)ds

(11)
Where

H=H(,, —5):[! B(s+ 6)B" (s + 8)ds

Such a u can be shown to exist under the conditions
mmposed on f,g and B by the method of Banks and Jacobs
(1973), Banks and Kent (1972). Moreover this function is
unicue and is defined for all t=[8,¢]

Now set
a) T(z,u)(t)=oif t[-h,o]
b) S(z,u)(t)=0if t [-h,0] (12)
¢) Tz, W)=Y (), W(t)),if t €[o,8)
d) S(z,u)(ty=(h{t),0)if te[o,8)=1
Where

Y(U=glt+8,0,2)-g@.0)

ht)= jt [(s+8,0,+ z,u(s+8)ds + jt B(s+ 8)u(s + 5)ds)

W(t)=B(OH [x, - ¢(t, - 8)+g(&,¢)

—gt.0.,8+7,—8)— j“s f(s+8,, + 7,,u(s+ 5))ds]
From the above remarks it is clear that if the operator

T+S given by (T+3) (zu) (t) = (Y (t) + h(t),w(t)),has a fixed

point so that (T+3) (z,u) (t) =(z(t),u(t)) then the system (*)

15 Buclidean controllable. In that case z(t) 13 given by (9)
and u(t) by (11)

Theorem 3: If u’ is an optimal control which steer the
system (*) from a point x, to the point x, in the state space

E" and if t" is the minimum time to achieve this, then there
exists a non zero vector KeE" such that

w(t) =sgn [KF~ (0 BO)] (13)

Proof: We wish to minimize t, such that x, €A (t) Now
suppose we set

y(£) =F'(t) B(t)
or y(t) = (y,(t), v, (... y (D)

(14)

Where T denotes matrix transposition and suppose for t'
the optional time,

w, =F'(t")x -x, E"

then w, = J‘:l yis)u' (s)ds

From defimtion (5), it easy to see that, in particular
R(o)y= {0} and R(1) increases with time and meets w, at
the boundary of R (t"). Now at w,.there exists a hyper
plane of support for R(t) with outward normal K at w,.
Thus for minimum time and for K #0, we have K'W >K™W
for all w eR(t) This implies

[ Ky ()~ uis)] ds >0 (15)

Now from a consideration of u” = 41 it is easy to see
that the above inequality is satisfied if u" and K'y(s) have
the same sign simultaneously. Hence, we infer that u' =
sgn (KTy(s)).

Which from (14) 1s true for all tet [0,t7]. That is
Eq. (13) holds. To harness the maximum principle for
this purpose, we define a Hamiltoman function
H given by

H =(xud) =¢ fix.tut d, ford, 2 Oand  (16)

H (tx,u) = Max H (t,x,u). A necessary condition that u'
be optimal and ¢ (t, u) the corresponding optimal path is
that there exists a non zero vector function ¢ such that

oH . aH

Htud)=H (t u',6 )y and b = o

H=4¢, +6 Bu(t)
H' = facto, + 6 Bu }
= ¢u + max{¢ Bu (t) }

Since the solution ¢(t) is given by ¢(t) ={K"F' (1) for
K¢ B we deduce that H' can have its maximum if u* = sgn
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{K, x' B(t)} as in (13). However it is assumed that f
satisfies all smoothness conditions for existence and
uniqueness of solutions and that f(,0,0) =0

Remark 1: A special relationship exists between the
attainable set A(t) and the reachable set $(t) as in
definitions (4) and (5) as follows:

A() = x(t) = F(x, + [ F'(t-s)B(s)ds
- F(t)+ j F ()B(s)u(s)ds

= F(H)x, + | y(s)ufs)ds

A = F() x,+ RO (18)

Remark 2: (The bang bang principle): With reachable set
M(t,0) = E°, exploit could be made of the bang bang
principle whose immediacy of applicability is not guar-
anteed were (t,0) 1s subset of a function space. Define
the Bang-Bang controls on [0,t]; t, =0 by C® ={uu is
measurable, /Au(ty=1 J=1,2.3, int e [0t,]

t

R0y = { J.t° F(0,8)B(s)u(s) ds; ueC™}
The principle states; $ (£,0) =R"(t,0)

Proof: Chukwu (1982).
CONCLUSION

Optimal control literally means controlling a system
m a “best way”. This has been observed m much control
linear processes of certain types. Exploits are now
directed to nonlinear systems where unavoidable
nonlinearities in systems affect the evolution of the
system m a direct manner. This work x-rays and resolves

such nonlinearities by considering it as a base for a linear
system and thereafter fixes it to zero. A special case of
the maximum principle 18 proved for system (*).
Necessary conditions and form of the optunal control
deduced. More interestingly the neutral control system is
shown to be not only Euclidean controllable also but
optimally controllable.
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