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Abstract: The unsteady flow of fluids in tubes of uniform circular cross-sections has applications n the
chemical and petroleum mdustries. A sigmificant amount of work, mainly theoretical, has been done for
Newtonian and non-Newtonian flows. In this study, a particular non-Newtonian fluid is examined, which falls
mnto the class of viscoelastic fluids and 1s known as the Upper Convected Maxwell fluid. In 1990, Han Shifang
and Wo Yueqing, examined the transient response of a flow of this viscoelastic fluid in a tube of uniform
circular cross-section. In more recent times, for this class of viscoelastic fluids, Rahaman and Ramkissoon

examined some basic but mteresting pipe flows. In neither research did the researchers mvestigate the
fundamental question of the uniqueness of the solution. This research establishes that the solution for such

1s 1n fact wique.
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INTRODUCTION

Unsteady pipe flows are of importance to scientists
and engineers mamnly because of their widespread
applications. A tremendous amount of work, mainly
theoretical, has been done both for Newtoman and
non-Newtoman flows (Balmer and Fiorina, 1980; Etter and
Schowalter, 1965; Fan and Chao, 1965; Gorla, 1981,
Gorla and Madden, 1984; Ting, 1964).

Shifang and Yueqing (1990) examined the transient
response of a flow of an Upper Convected Maxwell fluid
in a tube of uniform eircular cross-section. Rahaman and
Ramkissoon (1995) examined the flow of this same fluid,
subjected to various pressure gradients, through a pipe of
uniform circular cross-section.

Rahaman (1997) examined the flow of tlus Upper
Convected Maxwell fluid through a duct with a umform
rectangular cross-section, here the flow due to particular
time dependent pressure gradients were obtained and
quantities such as the drag and friction factor computed.
In none of these studies was the fundamental question of
the umiqueness of solution investigated, which 13 now
mvestigated.

MATERIALS AND METHODS

The rtheological equation of state for the Upper
Convected Maxwell flud Eq. 7 1s given by:

T=-pl+8 (1)

S+AS=2uD (2)
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= Total stress

= Extrastress tensor

= Deformation rate tensor

Tsotropic pressure

= Relaxation time

= Viscosity coefficient

= Represents the upper-convected derivative,
defined by:
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The dynamic equation is:

dq

VoS- Vp=p = )
2= Vp=p &t

Where:

1 = Velocity field

In the case of unsteady, incompressible axially
symmetric flows in tubes of uniform circular and
rectangular cross-sections, the constitutive and dynamic
Eq. 1, 2 and 4 lead to the field Eq. 8:
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where, w is the component of the velocity in the axial
z-direction; while the continuity equation takes the form:
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V.= G (6)
< 0z
Equation 5 and 6 must be solved subject to relevant
mitial and boundary conditions. However, the
fundamental question that should first be answered is the
question of uniqueness of solution of this system, which
1s now addressed.

RESULTS AND DISCUSSION

Uniqueness theorem: Consider a more general system of

equations:

dq, . dq 1 Ad (7
+ A =—n. ——(p)+ -
at atz A at (p1 ) Uq1,]]
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and assume it represents an incompressible, unsteady
viscoelastic flow in a bounded region V with fixed
boundary S and that the field parameters (4, p), satisfy
the following conditions:

* ;, dq/0t and p are known throughout the closure of V
att=0

¢ Jq/0t bounded at all times

* ;18 prescribed on S at all times

¢ pis continuous in V and its first order spatial
derivatives are bounded in the closure of V at all times

* ¢ and theirr fust and second derivatives are

bounded continuous functions in V

Theorem: The system of equations given by Eq. 7
and &, subject to the conditions (1) to (v) has a umque
solution.

Proof: Assume there are two possible solutions (g, p..)
and (gs- pe) and let

gzﬂla_ﬂw P= Pg~Pe

We shall proceed to show that Q=9 and P = 0 mn V.
Substituting  (q,. p,) and @.w) inte Eq 7 and
subtracting gives,
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Multiplying Eq. 9 by Q, and integrating over V gives,
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Similarly, Eq. & gives,
Q=0 (1)
Observe that,
9Q,
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Using Eq. 12 in 10 gives,

19 2°Q, 1
EaIQlQldV <A [W}Qidv +5J-R1Q1d\f
v v v (15)
+&J‘E(P- Qv+ v|[Q, ;QdV
pvat A i ! 1,0
Equation 13 gives,
LAY PR (16)
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where the boundedness condition (v) has been used so
that
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in which N, is an appropriate large number. Using again
the boundedness conditions on P and g; gives:
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Using Eq. 14 gives,
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Using the boundedness conditions here gives,

j P)QdV| <N, J.QlQldV +N,
V V (] 8)
d
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J, at ) at;[
where, N, , N; and N, are appropriate large numbers.
Similarly,
QY| <N [QQAV (19)
where again, N; 1s a relatively large number.
Substituting Eq. 16-19 into 15 and letting
N U
I= v, =—,1 =—
lQin ot at’
gives
—%1”+ Al'+BI<0 (20)

where A and B and constant
Taking the Laplace transform of (20) and using the
conditions,

Oy =I(0)=0

gives

{%32+As+ B}TSO (z1)

where, T represents the Laplace transform of 1. Since,
Eq. 21 is valid for all s and fixed A, A and B = 1 = 0.

CONCLUSION

By uniqueness of Laplace transforms, I = O= since V
is arbitrary, Q; = 0 throughout V for all t. Using this in
Eq. 9 and the condition that P = 0 initially, gives P = 0 in
V for all t This establishes the uniqueness property and
hence proves the theorem.
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