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Abstract: Scientists and engineers use several techniques in solving contnuum or field problems. Loosely
speaking, these techniques can be classified as experimental, analytical or numerical. Experiments are expensive,
time consuming, sometimes hazardous and usually do not allow much flexibility in parameter variation.
However, every numerical method, as we shall see, involves an analytic simplification to the point where it is
easy to apply the numerical method. Tn spite of this fact, the following methods are among the most commonly
used in Electro Magnetism (EM). In general these methods could be divided in Analytical Methods and
Numerical Methods. Application of these methods 1s not limited to EM-related problems; they find applications
in other continuum problems such as in fluid, heat transfer and acoustics. In this study, the FDM has been
elaborated. In the beginning approximate methods in general have been elaborated. The finite difference
techniques are based upon approximations which permit replacing differential equations by finite difference
equations. These finite difference approximations are algebraic in form; they relate the value of the dependent
variable at a point in the solution region to the values at some neighboring points. From the results we can see
that for case when we have uniform distribution of the electric charges mside the cube, we obtain maximum of
the potential in the center of cube, whereas if we have mside the cube only one electric charge we will obtain
so-called Green function. From the results we can see that the accuracy increases with increasing the number
of grid points and iterations.
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INTRODUCTION

In this study, we consider the solution of the Poisson
equation on a regular 3D domain. An important
application of finite differences is in numerical analysis
especially in numerical differential equations which aim at
the numerical solution of ordinary and partial differential
equation, respectively. The idea is to replace the
derivatives appearing i the differential equation by fimte
differences that approximate them. The resulting methods
are called finite difference methods.

The main problem of electrostatics is solving Poisson
equation:

AV = ple,

This equation 1s a simply a combination of Gauss’s
law with the fact:
E=-VV

In the regions where there are no charges, thus the
Poisson’s equation transforms into Laplace’s equation:

AV =0

(Tackson, 1999). The most common situations are when
the potential on the surface that surrounds the area of
interest is known.

Using the Poisson’s equation we can determine the
potential within the area. To solve numerically these
equations we should do approximations of partial
denivative by differences. Using Fimte Difference
Method (FDM) we can solve also diffusion equation
{(especially Fick’s second low) which 1s the motivation
of this study because the Fick’s second low is very useful
in vacuum technology and our research is focused in this
field.

MATERIALS AND METHODS

Finite difference method: Ts one of the methods for
solving Poisson's equation.Partial differential equations
that describe the electrostatic field, under this method
transformed algebraic equations systems which then
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solved through software. The finite difference
technique is based upon approximation which permits
replacing
differential equations by finite difference equations.
These finite difference approximations are algebraic
in form; they relate the value of the dependent variable at
a pomt in the solution region to the values at some
neighboring points. Thus a fimte difference solution

basically involves three steps (Sadilag, 2001):

*  Dividing the solution region into a grid of nodes

*  Approximation the given differential equation by
finite difference equivalent that relates the
dependent variable at a point in the solution region
to its values

. solving the difference equations subject to the
prescribed boundary conditions and/or initial
conditions

The course of action taken in three steps 1s dictated
by the nature of the problem being solved, the solution
region and the boundary conditions (Roberts, 2001,
Smedingho, 2005). The most commonly used grid patterns
for two-dimensional problems are shown in Fig. 1.

Examine the point M (x, y) on two dimensions
electrostatic field and assume that the potential of this
point 18 V (x, v).

Potential of close pomts to M1, M2, M3 and M4
indicated in Fig.2 can be determined approximately if the
potential V (x, y) transformed inte Taylor series with
respect the x and y axi1s, so that for practical reasons, the

infimte series 15 truncated after a second-order term

(Pang, 2006).
oV at IV
Vix+ Vixyra—+2. 20 D
(x+a,y)=V(xy) A T
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Vix-—ay)=V(xy)- H%Jr% gXVJr ...... (2

After collect the last two equations side to side 1s
obtained:

IV Vix+a,y)t+ Vix—a,y)-2-V(xy) (3)

ox* a’

Similarly will win even during the determine of the
potential V(x,y) with respect to y axis:

82_\/:V(X,y+a)+V(X,y7a)72-V(x,y) (4)

oy a
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7

Fig. 1: Common grid patterns: (a). rectangular grid, (b)
skew grid. (¢) tnangular grid. (d)circular grid
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Fig. 2: Show potential of close points to M,, M,, M,

and M,
Application of on FDM ne Poisson’s Equation: Poisson
equation is:
WV =_ple (5)
Where:
p = Charge density
¢ = Permittivity of the medium

If the charge density 1s zero, then Laplace's equation
results, the right side of the last equation becomes zero
and we thus obtain:

vV =0 (&)
The approximation of Laplace’s equation by
difference method is:
2 2
OV 9V _ 0 7

R + E—
oxt oy’
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Graf potential N =500, K =11
V=0
p=¢,
Ve V=0 a=1
Fig. 3. Boundary condition ©
a
o . . Graf of potential N = 500, K = 11
Substituting Eq. 3 and 4, into (7) gives: P
5
1
V(&Y)—z'(V(XJFa,Y)WL Vix—a,y)+ (R) & 4
+V(x,y+a)+ V(x,y—a) g 4
So this is the potential in the point M(x,y). 2
By comparing with two-dimensional case, the 1
Laplace’s equation for the three-dimensional will be:
0
ViX,y,Z) = 1 (Vix+ayz)+Vx-ayz+
6 (9) Graf of potential N = 500, K =11
+V,y+taz)+ Vixy—a,z)+V(x,y,z+a) . - 22
+V(X>Y=Z*a)) 2.5 z
. 1.8
The same way can be used to calculate the potential s1s . i'j
from Poisson’s equation, using the same approximation ; 1], 1:2
for AV and adding on every peint electric charges L5 - 1
. . L . s
density, so the difference approximation, the equation for ol . 0.8
potential on the point M(x,y) becomes: 15 0.6
13 0.4
1 0.2
Vixy,z) = © {(V(x+ayz)+V(ix-ayz)+
+V,y+taz)+ Vixy—a,z)+V(x,y,z+a) (10}
2
VY. z )t e p(x ) °
E 8
7
Boundary condition: We will assume that side of the cube 6
they will be with zero potential whereas inside the cube s
has electrical charge distribution. Tt will also assume .
that the density of electric charges is p=¢andthea = 1. N
Fig. 3.
2
RESULTS AND DISCUSSION !
0

The results are given for two cases of boundary
condition:

* Inside the cube the density charges are umform Fig. 4: Dependence of potencial: a) z=1,b) z=6, ¢) z= 10,
distributed d) z =50
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Fig. 5:
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Dependence of potential: a) z =6, b) z =20, point
(18,18), ¢) z=20, point (11, 11), d) z=11
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+  TInside the cube we suppose to have only one electric
charge 1n any pomt and on other pomnts inside the
cube we don’t have electric charges (Green's
function) (Avdiaj, 2007).

Uniform distribution of electric charges: If the
distribution of density charges i the cube 1s umform, the
form of potential inside the cube is displaced in the
Fig. 4 and from those result we see that potential in the
center 15 maximal and 1t going toward the edge tlus
potential decreased due to of boundary condition. If we
increased the number of grid points and the iterations the
accuracy increased (Fig. 4).

Distribution of electric charges in certain points: If we
have inside the cube only one electric charge we will
obtain o-called Green function (Dirac delta function)
(Fig. 5). Although again in this case the value of potential
1s higher near the electric charges.

CONCLUSION

In principle the partial differential equation of Poisson
equation is solvable according to Finite Difference
Method (FDM). The results that are obtained shown that
maximum potential value appears at the center of cube,
whereas potential values are reduced going toward cube
edge. For the case of single electric charge inside the
cube, a Green function (or a Dirac delta function) forms for
the potential function appear. Accuracy of modeling
increases with mereasing the number of grid points and
iterations.
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