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Abstract: FIR (Finite Impulse Response) digital filters are designed using traditional methods such as analog

to digital transformation techmques with analog filter topologies like butterworth, chebyshive and elliptic, etc.
In addition, it can also be designed by using adaptive algorithms. Tn this study, FIR arbitrary shape filter can

be designed using LMS algorithm. Convergence of the adaptive filter to the optimum weight values depends

on the statistical characteristics of the input signal (the correlation matrix R,,) which is highly depending on the

mput signal. Maximum step size of the LMS algorithm has been found and the optimum step value 1s derived

based on wiener-hop formula. The proposed algorithm has been theoretically derived, simulated using Matlab
and tested for several filter types. The results shown LMS adaptive technique, more flexibility can be achieved

in design response for the required filter.
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INTRODUCTION

Filter design 1s always an important 1ssue in signal
processing. Because Finite Impulse Response (FTR) digital
filter has good characteristic of linear phase which can
avoid phase distortion when FIR filters are used to
transmit signals, it attracts many researchers’ attentions
and 18 used generally n many fields (Peiqing, 2001,
Kuc, 1988). In fact, FIR digital filter design is essentially a
multi-criterion optimization problem with multiple local
optimums in most cases. There are many contrary factors
among the multiple criterions such as the maximal ripple in
passband, the width of transition band and the minimal
attenuation in stopband. Tt 18 very necessary to explore
the relations to inprove the qualities of FIR digital filters
designed (Cheng and Yu, 2000).

Many methods have been proposed for designing
FIR digital filters with linear phases (Xiaoping, 1999,
Goodwin and Sin, 1984; Cheng and Yu, 2000). FIR digital
filter 1s mostly based on some approximate process on
frequency characteristic of ideal filter such as windows
function method, equal-ripple approximation method and
frequency sampling method. To further improve the
accuracy of FIR digital filters, Xiaoping puts forward the
Random Sampling Recursive Least Square (RS-RLS)
algorithm (Xiaoping, 1999). The RS-RLS algorithm does
not deal with the operation about an inverse matrix but an
experiential error weight function must be provided.
Furthermore, the algorithm does not remarkably improve
the precision of the filters. Both window method and
frequency sampling method belong to the usual designing
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approaches of FIR filters. Since both approaches can not
accurately control cutoff frequencies of the pass-band
and stop-band in the practice applications as a result
many scholars have presented some optimal design
approaches. The famous method 13 Remez permutation
algorithm based on the rule about maximal error minimum
and linear programming algorithm in all the methods. The
PLS algorithm has recently been advanced for solving
positive definite Quadratic Programming (QP) problems
(Lai, 2005). The PLS algorithm can be applied to
constrained L5 design of FIR filters directly and to
constrained MM design of FIR filters in an iterative
fashion. The Weight Least Square (WL S) algorithm easily
come true and can acquire analytical solution (6-8) but it
must calculate an inverse matrix. The matrix’s rank is the
number of the independent coefficients of the filter. When
the filter’s degree 1s very lugh, it 1s difficult to compute
the inverse matrix (Goodwin and Sin, 1984).

In this study, designing the FIR digital filter by using
LSM algorithm was proposed. To design a digital filter,
first it needs to establish some performance specifications
and find a discrete time liner system according to the
application. Second, actualize the system by means of
simulations. Finally, examples of FIR digital lowpass and
bandpass filters design are given to demonstrate that the
method is effective, general and flexible.

MATERIALS AND METHODS

Synthesis of digital filters can be accomplished by
making use of adaptive modeling techniques. The basic
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Fig. 1. Scheme for adaptive synthesis of a specified filter;
a) excitation of a single frequency, f; and b)
excitation at N different frequencies

idea for the synthesis of FIR digital filters is represented
mn the block diagram of Fig. 1. The adaptive filter upon
convergence of the adaptive process will assume an
impulse response that best satisfies a set of design
specifications. These specifications are described by the
box labeled psedofilter. The psedofilterdoes not exist
because the filter to meet exact specifications will greatly
not be physically realizable. This is the purpose is to tie
the filter synthesis problem to the plant modeling problem
(Golomb, 1964). Assuming that the filter specifications are
given in the form of frequency response that is a set of
requirements that the filter haveprescribed gain magnitude
and phase characteristics at the discrete frequencies f,, f,,
..., by, measured n Hz. Generally, the number of weights
to be used in the digital filter will be specified thus
defining T, the size (order) of the adaptive filter. Adaptive
process finds a design solution that is a best fit (in the
minimum mean-square-error sense) to the specifications
(Dixon, 1976).

From Fig. 1, the adaptive filter models the psedo filter
design  specifications. These
specifications cannot in the most cases be met perfectly

derived from the

n their entirety. However, one can umagine the existence
of the psedo filter having a frequency response,
magnitude and phase perfectly meeting the design
specifications. In Fig. 1a, the mnput simusoid will be in the
form:
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x(t) = sin (2ufit) 4}
Sinusoidal generator 1s applied to both the psedo
filter and adaptive filter. The frequency f, 1s one of the
specification frequencies. The output of the psedo filter
assuming linear operation is:
dit) =asm 2nfit+0,) (2)
This is the desired response at the output of the
adaptive filter. The coefficient a, 1s the design response
magnitude at frequency f, and the angle 0, is the design
phase shift at frequency f,. In order for the specifications
to be met (or at least closely approximated) at many
frequencies simultaneously, an input comprising a sum of
sinusoids, one for each of N specification frequencies 1s
applied to both the psedofilter and the adaptive filter in
Fig. 1b. This input is (Etter and Stearns, 1981):

x(t)= %Sin(anit) (3)

The output of the psedo filter which is the desired
response of the adaptive filter is:

dity= ZN: a, sin(2nf t+6,) (4

1=1

When specifications cannot be perfectly met at all
frequencies, it
specifications more tightly met at certain frequencies then
at others. Certain parts of the design frequency response
may be more critical then others. This can be
accomplished easily by having mput simnusoids with
various individual amplitudes rather than all umt
amplitudes and scaling the components of d(t)
accordingly. The larger the amplitude of the input
sinusoid, the more tightly will the specification be held at
its frequency. When practicing this techmque, the lth
individual mput sinusoid 1s scaled be ¢ and 1s given by:

is sometimes desirable to Thave

¢sin 2nfit (5
with ¢; begin a positive constant cost function for all L.
The input signal again is a sum of sinusoids as shown:

x(t) = %ciSmprit (6)

i=1

This desired response, the output of the pseudo
filter is:
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N
d(ty=>acsin(2nft+8,) (7
1=1

once again, the desgin specification magnitude is & and
the phase is 0, at frequency f. The adaptive filter
converges to least-squares solution which provides a
best least-squares fit to the design specification. The form
of this solution is of interest. The least-squares solution
has been discussed in many references (Etter and Stearns,
1981). The algebraic form of the least-squares solution in
the case of the adaptive linear combiner is well known
(Widrow et al., 1981; Soldan, 1988) using the correlation
notation the solution is:

042 (03 0 (LY T 0 (O
W*=R 'P=|: :
Oy (L) 055 (0) | | 02 (L)

&)

as before, T+1 is the number of weights in the adaptive
linear combiner. Since, researchers know the signals d and
x, they can compute the correlation functions. Let us
define, T, is the time step between samples then it can be
shown that (Sarwate and Parsley, 1980):

0z (m) = E[x{t -nT)x(t)]

_%

Since, the expected value of the product of two

N N
>oesin2nf (t—nT)> ¢, sin2mf,t

i=1

} @

m=1

sinusoidal time functions of different frequencies is zero,
Eq. 9 becomes:

N
Z ¢f sin 2nf, (t — n'T)sin 2nf t

i=1

¢XX(H)—E{ :| (10)

using the trigonometric identity:

sin2af (t —nT) =sin2nf tcos ZninT —

cos 2nf tsin 2nf;nT

Equation 10 become:

N

2

o1 ¢ sin2wfitcos 2nfitsin 2nfinT

c sin’ 2nftcos2nf nT —

bxx(n)= E{

|

M
1=1

|

(11)

M=

¢/ sin 2af tcos 2nf HT:|

2
c cos2nfnT

B2 | =
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In obtaining Eq. 11, recall that sine and cosine waves
are uncorrelated and that the mean square of a sine wave
1s half the square of its amplitude (Proakis, 1983). Thus,
Eq. 11 have all of the elements of the R-matrix. The
elements of the cross-correlation vector P may be found
in like manner.

() = B[x(t - nT)d(t)]

[ N
= E| >gsin2af(t -nT)> a,c_ sin(2nf t + Bm)}
i=1 M=1
[
=E Z:alci2 sin 2af, (t — nT)sin{2nfit + 61)}
[ 1=1
[
= E| > ac/sin(2nf, - 2nfnT - Gl)sin(}nflt)}
i=1

N
1
> Ealci2 cos(2nfnT +6,)

e

Using Eq. 11, 12 in Eq. 8, it can write explicitly. The
least-squares solution for the adaptive filter weights. The
solution 1s:

i=1

(12)

N
Z ¢ cos2Laf,T

i=1

N
Z ¢/ cos2nf,T

i=1

W=

M
> acf cosLnf,T +8,)
Lo

N
> acicos(6)

1
M
>acl cos(2nf T +6,)
1=1

M
> ac! cos(2LafT +6,)
L1=1

(13)

Equation 13 provides a smmplifications in this
formulation result when the various specification
frequencies are uniformly spaced and when the input sine
waves are all of the same amplitude. The least-squares
solution mn Eq. 13 does not in itself give much msight into
the filter design In some ways, the adaptive process 1s
much more appealing (Haykin, 1996). The least-squares
solution is often valuable in the computer implem entation
of the design process, however because the R-matrix
and the P-vector can be computed directly from the
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design specification. Tf the adaptive weights are fixed at
WH*, the least-squares solution and the mean-square error
will be:

LEy|

E-*min = Z ch

i=1

i (14)

S-H

Where, S is the complex transfer function of the
specified pseudo filter at frequency f; that is:

Séa ejei (15)

and 3* 1s the complex transfer fimction of the optimal
adaptive linear combiner with weights W* at frequency f.
The transfer function for the adaptive transversal filter
can be given by Zhang and Schmer (2000) and Jones et al.
(2004):

H{z)= ZL:w;z'n (16)

and it can be seen that ¢ = ¢™7 is substituted for z to
obtain the frequency response. The normalized angular
frequency corresponding to f is of course:

w, = 2nf|T

So, H* in Eq. 16 become:

o :iwzesznf{r (17)

n=0
RESULTS AND DISCUSSION

To implement this technique, a simulation program
has been wnitten using Matlab 10 simulation program with
m-files format. The input signal %(t) has been simulated
with sinusoidal function with N different frequencies and
amplitude (cost function) as illustrated previously in
Eq 1.

The FIR filter design specifications are chosen by
mnplementing the function in Eq. 7 which defines the
required FIR filter type.

The LMS algorithm has been tested using Matlab
functions with maximum calculations of the step size, L.
The evaluation of the maximum step size gives boundaries
to the convergence rate of the adaptive process.

Optimum value of the step size, ., has been
calculated using Weiner-Hopf formula. This research has
been tested for different filter types; LPF, BPF, HPF and
arbitrary shape filter with order, L = 32. The sumulated

response has been compared with standard built-in
Matlab functions as well as with ideal filters. Matching
has been achieved between the simulated and ideal
response with fast convergence of the LMS algorithm to
the best weight values.

Using 200 samples for the mput and desired signals,
the minimum mean square error, { ;. has been got with
only 30-50 samples depending on the optimum value of
the step size, p, more simulation result can found in
Fig. 2-19.
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CONCLUSION

In this research, FIR (Fimite Impulse Response) digital
filter have been designed and implemented using LMS
adaptive algorithm. This technique 15 better used for FIR
digital filter design with large number of weights. More
flexibility n this synthesis approach 1s obtained and
unusual filter designs can be realized compared with the
classic filter designs. By using Weiner-Hopf formula,
optimum step size of the LMS algorithm has been
obtainedand fast convergence to the FIR filter weights
have achieved.

As a future research need more on analytical solution
of cost function (¢,) since, no theoretical evaluation has
been found for the cost function till now. Different
adaptive techniques can be used rather than LMS method
and tested to find faster and better response of the
designed FIR filter.
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