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Abstract: ITn communication, the recovery of the information signal at the receiver end is only possible if carriers
at the transmitting and receiving ends are synchronized both in frequency and phase. The notion of frequency
and phase is in general not well-defined in chaotic systems and can thus not be used in characterizing
synchromzation in chaos communications. The first success in synchromzation of two chaotic systems credited
to Pecora and Caroll was termed self-synchronization. A chaotic system 1s self-synchromzing if it could be
decomposed into at least two sub-systems; a drive sub-system (transmitter) and a stable response sub-system
(receiver) that synchronize when coupled with a common signal. In this study, three chaotic systems: Chua’s
Crrcuit, Lorenz and Rossler System were modelled using Simulink in Matlab environment. Self-synchromzation
was carried out between two copies of each of the chaotic systems with variations in mitial conditions. The
trajectories of the drive and response signals obtained from each pair of chaotic system after running
simulations clearly demonstrated the effect of self-synchronization.
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INTRODUCTION

Tang et al. (1983) described synchronization as a
phenomenon in which a small periodic signal {called
synchronizing signal) with an accurate period is used to
drive a system which can produce larger signal having a
period not far from the driving signal in such a way that
the larger signal locks on to the synchronizing signal’s
frequency (or to some multiple or sub-multiple of it). In
general, two periodic systems are referred to as being
synchronized if either their phases or frequencies are
locked. Parlitz et al. (1999) reported that for chaotic
systems, however the notion of frequency and phase are
in general not well defined and can thus not be used in
characterizing synchromzation

Communication with chaos-based systems 1s only
possible if the system at the
synchronize with that at the receiver. This was the muitial
threat to the possibility of a chaos-based communication
(Boccealetti et al., 1997). It was not until 1990 that it was
discovered that by arranging parts of a chaotic system in
a specific way, one could achieve identical chaotic
behaviour even if the parts are isolated (Carroll, 1995;
Pecora and Carroll, 1990). This heralded the era of chaotic
secure communication in which a message signal 1s used
to modulate a chaotic signal before transmission and a

transmitter can

synchromzable and identical copy of the chaotic system
1s used for demodulation at the receiver.
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Theory: The feasibility of synchromzing two chaotic
systems was not obvious until 1990 since their trajectories
starting  arbitrarily diverge
exponentially with time and quickly become uncorrelated
(Carroll and Pecora, 1991 Parlitz et al., 1993; Parlitz and
Ergezinger, 1994; Stojanovski et al., 1996; Yang and Chua,
1999). Pecora and Carroll (1990, 1991) introduced the idea
of synchromzing two 1dentical chaotic systems that start
from different imtial conditions. The idea mvolves linking
the trajectory of one system to the same values in the
other so that they remain in step with each other through
the transmission of a signal (Boccaletti et al., 1997,
Lu and He, 1996, Pecora and Carroll, 1990, 1991,
Stojanovski ef al., 1996).

The first success achieved in synchronization of two
chaotic systems was credited to Pecora and Caroll (1990,
1991). Tlis approach, termed self-sychromzation has
remained a dominant method in chaotic synchronization.
A chaotic system is self-synchronizing if it could be
decomposed mto at least two sub-systems: a drive
sub-system (transmitter) and a stable response sub-
system (receiver) that synchronize when coupled with
signal. Tt therefore that only
3-dimensional and higher order chaotic systems possess
self-synchromzing property (Cuomo et al., 1993).

Consider an n-dimensional autonomous dynamical
system described by Eq. 1:

close to each other

a comimnon follows

i="f(u) (1)
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The system is then divided arbitrarily as illustrated
into two sub-systems:

v =glv,w) 2)
w =h{v,w)

Where:

vo= (u,...,,)

g = (fi(u)... L(u))

W= (U Ug)

h = (., )

A first response, system may be created by
duplicating a new sub-system w identical to the w’
system, substituting the set of variables v for the
corresponding v* in the function h and augmenting Eq. 2
with this new system, giving:

v=gv,w)
W =h (v, w) (3

w =hiv,w")

It 1s possible to create a second response sub-system
by reproducing v sub-system and driving it with w
variable giving:
v=g(v,w)
V-V, =h(v, W,) (4)
w=h(v,w)

V=g (v, W)

If all Lyapunov exponents of the w’ and v”
sub-systems (as they are driven) are <0 then (w’-w) -0
and (v7-v) -0 as t-e, i.e., synchronization is achieved.
Since, the evolution of the Chaotic Synchronization
Theory, many researchers have demonstrated the
possibility of employing the synchromzation properties of
chaos chaotic sub-systems for secure communications
(Kennedy et al., 2000, Kocarev et al., 1992, Parlitz et al.,
1993; Parlitz and Ergezinger, 1994).

MATERIALS AND METHODS

Self-synchronization in Chua’s circuit: The Chua’s
System used as the transmitter 1s given as:

. G 1

v, =—{(v , —v_)——h(v
el cl( c2 El) cl ( cl)

] G 1.
chzciz(vnfvcz}rcizl]_ (3)
: 1
I = Ve

There are two possible way of decomposing Chua’s
circuit using self-synchronization scheme. The 1st is by
using v, as the drive signal and the 2nd is by using v, as
the drive signal.

In the first approach, the receiver is made up of two
stable sub-systems decomposed from the original system
using Pecora and Carrol Scheme.

The 1st sub-system (v,,i; ) (referred to as the first
response sub-system is driven by from the transmitter to
give an output i, :

'

] G . 1.,
Vi :E(Vcl _ch)""CTIL
2 (6)

The 2nd sub-system (v ) referred to as the second
response sub-system 1s driven by vi to give Vi as
output:

G 1
v, =—(v,—-v )——h(v (7)
cl Cl ( cl cl) Cl ( El)

Since the Lyapunov exponents of the response
systems is negative, va=vy and synchronization is thus
achieved. The receiver 1s therefore given by:

LG, ‘ 1 '
Va :7(Vc2 _Vcl)_ih(vcl)

: Cl Cl
L, G , 1., (8)
V,=—(V —V_ )+—1
cl cz( cl EZ) C2 L
ir 1 '
1 :_Evcz

The transmitter and the receiver systems were
modelled with Simulink as shown in Fig. 1. For the
transmitter, the imitial conditions were v, (0) = 0.001,
v, (0) = -0.05, i, = -0.02 and for the receiver, the initial
conditions were v () =1.0, v, () =-0.05= i (0)-0.02.
A parameter variation of 0.1 was also introduced between
the transmitter and receiver systems. The time series and
synchromization for the composite system were displayed
on XY graph and the scope of the model.

In the second approach using v, as the drive
signal, the first response system is the (vi) stable
sub-system driven by v, to give vu as output and it is
given by:

- f G ‘ 1 ‘
V:l :E(ch 7Vcl)7cih(v:1) (9)
1 1
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Fig. 1: Self synchronization in two Chua’s circuits with different imtial conditions and parameter values using v, as the

drive signal
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Fig. 2: Self synchronization in two Chua’s circuits with different imtial conditions and parameter values using v; as the

drive signal

The second sub-system (vi;, i ) referred to as the
second response sub-system 1s driven by vi to give v,
as output:

G

=— (v —
C(cl

1 -
-y ' o '
Vez ch)Jrc_zlL 1 = *Evcz

(10)

The receiver is thus given by:

G 1
=—(v_,—v )>——h(¥
1( c2 cl) Cl ( cl)
G, . 1., 1,
:_Z(Vn_vcz)"'c_zlLlL:_Ech

vr

cl

(1)

The transmitter and the receiver systems were again
modeled with Simulink as shown in Fig. 2.

For the transmitter, the 1mitial conditions were
v, (0)=0.001, v, (0)=-0.05,1; = -0.02 and for the receiver,
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the mitial conditions were vy (0) = 1.0, v, (0y=-0.05,
it (0) =-0.02. A slight parameter variation from 0.1 was
introduced between the two copies.

The time series and synchromization error for the
system were displayed on the scope and the XY graph of
the model.

Self-synchronization in lorenz system: The Lorenz
System used as the transmitter 1s given as (Kamil and
Fakolujo, 2012):
u=gi{v-u)
v=ru—v-20uw (12)

w=35uv—bw

There are also two possible ways of decomposing the
Lorenz System for self-synchronization. In the first
approach using u as the drive signal, the first response
sub-system (v', w’) 13 given by:

vV =1m—v - 20uw’ (13)

w'=35uv' —bw'
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The second response sub-system (u’) is driven with
input signal v’ to give the output u’”:

u=c(v-u) (14)
The complete response system is thus given by:

w=c{(v'-u")
v =1u-v - 20 uw’ (15)

Ww'=5uv' —bw'

Since the two sub-systems are stable, u=u’ as t-es.
Thus, synchromization s achieved. The Simulink Model
for self-synchronizing Lorenz systems is shown in Fig. 3
with different initial conditions. The time series and the
synchronization error of the synchromzing systems are
displayed on the XY graph and the scope in the model. In
the second approach using v as the drive signal, the first
sub-system (u') is given by:

=c{v-u’) (16)
The second response sub-system (v', w’) is given by:

vV =rd' v -20uw (17)
W =5uv-bw'

The complete response system is therefore given by:
V=c({v-u)
Vi=m' -v' - 20u'w (18)

w=5uv -bw'

Since the two sub-systems are stable v=v' as t-ee.
Thus synchromzation is achieved. The Simulink Model

for self-synchronizing Lorenz Systems is shown in Fig. 4
with different initial conditions. The time series and the
synchronization error of the synchromzing systems are
displayed on the XY graph and the scope in the model.

Self-synchronization in Rossler System: The Rossler
system used as the drive system 1s given as:

X=-y-zZ
y=X+ay (19)

z=b+z(x-c)

self-

synchronization can only be done by wing vy as the drive

Decomposition of Rossler System for

signal. The first response sub-system, the sub-system
1s given by:
V=x'+ay (20)

The second response sub-system, the sub-system is
given by:

X=-y-z (21)
Z=b+2Z(x'-¢c)

The complete response system is given by:

X¥=-y-Z
¥ =x'+ay (22)

Z=b+Z (x'—c)

Simulink Model for self-synchromizing Rossler
Systems 1s shown m Fig. 5 with different imitial conditions
and parameter variation. The tune series and the
synchronization error of the synchronizing systems were
displayed on the XY graph and the scope mn the model.
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Fig. 3: Self synchronization in two Lorenz Systems with different initial conditions and parameter values using u as the

drive signal
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Fig. 4. Self synchronization in two Lorenz Systems with different initial conditions and parameter values using v as the

drive signal
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Fig. 5. Self synchronization in two Rossler Systems with different initial conditions and parameter values using v as the

drive signal
RESULTS AND DISCUSSION

The simulation results of self-synchronization carried
the three chaotic
namely Chua’s circuit, Lorenz System and Rossler System
modelled in Fig. 6-10.

From the results obtained, it was observed that a

out in continuous systems

difference m mitial conditions that would otherwise cause
two systems to produce divergent time series had no
effect when the synchronized using
self-synchromization approach. The difference in the
trajectories of two Chua’s circuits with a difference of

two were

0.999 m the mitial conditions and 0.1 difference in a
parameter value was reduced to zero after 0.075x107°
sinulation time and they became synchromzed thereafter.
The synchromzation of Lorenz Systems was achieved
within 0.2x107 simulation time in spite of the larger
difference in imtial conditions which was 400 and a
parameter difference of 4.

Lorenz System may therefore not be suitable for
application which requires the use of the same chaotic
systems but with different parameters. The effect of
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Fig. 6: Self synchronization of two Chua circuits using v,
as drive signal with different initial conditions and
parameter values; a) Tune series of v, and v ; b)
Synchronization error

parameter variation was almost unnoticeable in the two
systems. The Rossler Systems synchromzed within
0.5%107° simulation time.

This property demonstrated by the chaotic systems
confirmed their applicability in communications as
chaotic system at the transmitter end can easily
synchronize with the one at the receiver which in
practice will almost certainly have some variation in
parameters.
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Fig. 7: Self synchronization of two Chua circuits using
Vo, as drive signal with different initial conditions
and parameter values; a) Timne series of v, and v§;
b) Synchromzation error
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Fig. 8: Self synchromzation of two Lorenz Systems using
u as drive signal with different mitial conditions
and parameter values; a) Time series of u and u’;
b) Synchronization error
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Fig. 9: Self synchromization of two Lorenz Systems using
v as drive signal with different initial conditions
and parameter values; a) Time series of v and v’
b) Synchromzation error
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Fig. 10: Error feedback synchronization of two Rossler
Systems using y as drive signal with different
imitial conditions and parameter values; a) Time
series of y and y'; b) Synchronization error

CONCLUSION

The effectiveness of self-synchronization of Pecora
and Caroll was confirmed on 3-dimensional chaotic
systems, Chua circuit, Lorenz and Rossler System. Two
copies of each chaotic system with different mitial
conditions and parameter values that would ordinarily
same

produce divergent trajectories produced the

trajectories within a very short time interval.
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