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Abstract: Establishing lower bounds for standard algebraic operations is one of the most challenging tasks in
Theoretical Computer Science. In this study, researchers discuss lower bounds for matrix multiplication. After
a historical review of the progress in this problem. Researchers review a recent development highlighting how
the techniques of Group Representation Theory have been applied to give a new approach. Infact, this
approach has led to two conjectures whose resolution would achieve the ideal bound for matrix multiplication.
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INTRODUCTION

The task of multiplying matrices is one of the most
fundamental problems in algorithmic linear algebra. It 1s
classical that brute force matrix multiplication has
complexity ((n®) involving n* multiplications and (n-1)
additions. Strassen (1969) made the first break through by
divide and conquer strategy to achieve a bound of
O(n*™). In 1979, Bini introduced the notion of border rank
and obtained w=2.78, Schonhage generalized this notion
m 1981 and showed that w<2.548. In the same study
combining his research with 1deas by Pan he also showed
w<2.522 later improved by Romani to w<2.517 (Williams,
2011).

The first result to break 2.5 was by Coppersmith and
Winograd who obtamed w<2.496. Strassen (1969)
mtroduced his laser method which allowed for an entirely
new attack on the matrix multiplication problem. He also
decreased the bound to w<2.479. About 3 years later,
Coppersmith and Winograd combined Strassen’s
technique with a novel form of analysis based on large
sets avoiding arithmetic progressions and obtained the
famous bound of w<2.376 which remained unchanged for
decades. Williams (2011) has marginally improved
Coppersmith and Winograd bound to 2.3727 by using the
8th tensor power of the Coppersmith and Winograd
algorithm (Williams, 2011).

The next sigmficant development i1z the novel
approach by Cohn and Usmans (2003) and Cohn et al.
(2005) which uses Group Representation Theory. While
this gives a new techmique for the problem so far it has
not replaced Coppersmith and Winograd bound. But this
approach still opens up the possibility of proving w = 2
subject to the resolution of two conjectures proposed in
(Cohn et al., 2005) one combinatorial and the other
algebraic.
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Problem statement: To apply results and techniques of
group representation to estimate the complexity of matrix
multiplication. This involves finding appropriate families
of groups satisfying structural constraints. Experiments
are done with GAP (Rainbolt and Gallian, 2003) (Groups
Algorithms and Programming) a software tool to explore
the improvements obtained on the lower bounds.
Formally, let w be the smallest exponent for which there 1s
an algorithm for multiplying two nxn matrices using n®
arithmetic operations. As the product has n’ entries to be
read clearly w=2.

MATERIALS AND METHODS

A novel approach to the problem of estimating w was
found by Cohn et al. (2005) their idea was to use results
of Group Representations Theory to perform block matrix
multiplication m the group algebra. This aclueves
reduction m dimension of the matrices m a recursive
fashion-recursion achieved in terms of the dimensions of
the irreducible representations of groups.

Matrix multiplication via representation theory: To
multiply two nxn matrices A, B the method embeds both
A and B in the representation space of a suitable group G.
The embedding is done in such a way that both A and B
get represented as series of block diagonal matrices of
smaller sizes these sizes are actually the dimensions of
irreducible representations of G. Thus, the complexity of
matrix multiplication is reduced as by making clever
choices of G as the dunension of the block matrices are
smaller.

The crucial property of the appropriate group to
perform the above is called the Triple Intersection
Property (TIP) (Rainbolt and Gallian, 2003). Researchers fix
a group Gand subsets 3, T, Uin G, |3| = |T| = |U| =n.
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Researchers index the rows of A by elements of S and
the columns of A by elements in T. Researchers index the
rows 1n B by elements in T and the columns of Bby the
elements of TI. The rows of resulting product matrix C will
be indexed by elements in S and the columns by elements
of U. Researchers embed A in the group algebra as the
element A =Y A_ s~ t where s varies over S and t varies
over T and B as the element B = ¥'B, t7' u™ where t
varies over T and u varies over U.

Definition: Researchers say the sets 3, T, U satisfy the
triple intersection productproperty if for all 5, s,in S, t, t,
m T, u, u,in U, researchers have:

s, 7'ty = s o, i, s = st =t u =,
Theorem: Let S, T, U be three subsets of size n satisfying
the triple intersection product property. Embedding A, B
as described before C,, is the coefficient of s 'u in the
product of A B. The above theorem describes a
convenient method to multiply two matrices. Find a group
G and subsets having the triple intersection property
embed the matrices A, B as described. Elements of the
group algebra of G, A and B look like block diagonal
matrices. Tt is easier to multiply block diagonal matrices.
Now this resulting matrix has a umque expression as a
linear combination of the block diagonal matrices coming
from terms of the form s™u, so the product C' can be
written down using O (n®) moreoperations.

Now researchers explain how Group Representation
Theory enters the picture if G has k wreducible
representations V, of size d; multiplication in the group
algebra (Serre, 1977) reduces to multiplication of k
matrices of size dxd, 1<i<k. If the exponent for matrix
multiplication 1s w, these k matrices can be multiplied
using Y O(d®) arithmetic operations thus we expect to do
the matrix multiplication in atmost O(n®) operations by
defimtion. It 1s natural to expect n®<Y d®. Infact, Cohn and
Umans (2003) and Cohn et al. (2005) showed.

Theorem: Let S, T, U be three subsets of size n of a group
G, which satisfy the triple intersection product. Let the
size of G be n” for some constant ¢ and let d denote the
dimension of the irreducible representation V, of G. Then:

n“z Ldw

Example: The family of groups G, where G, is the wreath
product of (7,)° with 7, satisfies TIP (Triple Intersection
Property). With appropriately chosen subsets S, T and U.
Using the theorem one can show that w<2.91.
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General case: Cohn et al. (2005) have actually established
a bound w<24] using a deeper study of group
representations. Furthermore, they have proposed two
corjectures either of which would realise the ideal bound
w = 2. Researchers will discuss one of the conjectures in
the following.

RESULTS AND DISCUSSION

Uniquely solvable puzzles: A Uniquely Solvable Puzzle
(USP) of width k is a subset U c {1, 2, 3}* satisfying the
following property. For all permutations m, m, m,¢ Sym
(U), eithe r, = 7, = 7, or else there exist uclJ and ie(k)
such that at least two of (m,(w), = 1, (m,(0)) = 2 and
(m,(u)), = 3 hold (Cohn and Usmans, 2003; Chon et al.,
2005). A strong USP 18 a USP in which the defining
property isstrengthened as follows, for all permutations
T, T, T,eSym(l), either m, = m, = 1, or else there exist
uel and ie(k) such that exactly two of (m,(w)), = 1, (m,(w),
= 2 and (m,(u)), = 3 hold. For example, the following 1s
astrong USP of size 8 and width &:

3333 33
1 33 2 3 3
313 3 2 3
1132 2 3
331 3 3 2
1312 3 2
3113 2 2
1112 2 2

Researchers define the strong USP capacity to be the
largest constant C such that there exist strong USPs of
size (C-o(1))* and width k for infinitely many values of k.
With this notation the following conjecture implies w = 2.

Conjecture

The strong USP capacity equals 3/2**: Researchers
use USPs to show w<248 (Cohn and Usmans, 2003,
Chon et al., 2005).

IMPLEMENTATION

To study groups computationally GAP software
(Rammbolt and Gallian, 2003) was used. This provides
explicit construction of 5, T, U as i triple mntersection
property, characters of wreducible representations and
hence the block sizes of matrices to be multiplied. A
sample code is given as: Experiments were conducted for
the family of groups (7.,)° wreath product 7.,:

S6:
Sub:

Group((1,2),(1,2,3,4,5,6))
Subgroup (s6, ((1, 4) (2, 3) (3, 6)))
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7y = Group((1,2))
hom: = Group homomorphism by images (7, sub,
Generators of group (Z,), (1, 4) (2, 5) (3, 6)))
Zy = Group((1,2,3))
w: = Wreath product (7,, 7,, hom)
CONCLUSION
Using a more soplusticated construction in

(Cohn et ai., 2005), the researchers show that their
technique can be used so that w<2.41. They also state
conjectures which will prove that w<2.

In future, Group Representation Theory is expected
to become an indispensable tool in the toolkit of algorithm
designers and complexity theorists (Kumar, 2010).
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