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Abstract: To overcome the lack of observability in FPGA-based prototypes, trace-buffer mnsertion plays an
umportant role in the design. But it also has a disadvantage of which it leads to the recompilation of the entire
system. In this study, we introduce how the incremental techniques are used to discard the necessity of
recompilation process on the circuit design and also we propose the CAD optimizations to improve the special
features, routing capacity and mimmizing the delay unpacts. The use of these technique implementations in this
circuitry, fastens the magmitudes than a full compilation. In this scenario, the incremental trace insertion is
notable as higher as 98 times faster than a full compilation of the design and 25% of the memory capacity is
used for tracing. The incremental circuits are more helpful for the designers only to modify by inserting the

trigger circuitry rather than compiling the entire design.

Key words: Incremental trace insertion, Field Programmable Gate-Array (FPGA) prototypes, trace-buffer,
routing capacity, incremental compilation or recompilation, memory capacity

INTRODUCTION

FPGA-based prototyping enables to evaluate the
complex designs of the hardware in direct way with certain
speeds faster than it simulates. This approach has a
disadvantage of unclear reports while debugging.
Running at high speeds on FPGA (Graham e al., 2001)
prototype have many real and exhaustive tests with high
functionality parameters. To address the observability
i unexpected behavior, some commercial tools like
Altera’s Signal Tapll, Xilinx’s ChipScope (Pro 12.3 2010)
and tektronix (Mentor Certus ASIC multi-FPGA
prototyping debug suit 2012) are essential to provide the
ability to insert the Trigger Circuitry core systems in the
FPGA-based prototypes. Trigger circuits are required to
start and/or stop recording based on the values of
selected signals in the circuit at compile time. To change
the trigger behavior, re-compiling is a necessary process
as the cost increases for each debug iteration. After the
core system is inserted, the whole design can be compiled
and the conditions stop/start are recorded accordingly. If
any bug is found or suspected while in this process, the
conditions can be changed that has been recorded and
Recompilation must to done at this point. Compile times
are still long, even the vendors gains at reducing compile
times in the past which are significantly reduce the
productivity of the debug (Incremental trace buffer

insertion for FPGA debug, Very Lager Scale Integration
VLSL, IEEE Transactions (on vol. 22 no 4 pp. 850-863 2014)
and finally Towards Simulator-like observability For
FPGAs).

To overcome this, we introduced a method called
incrementally implementing the trigger functions using the
logic elements and connecting these Trigger functions to
both the input signals and the memory arrays used as
trace buffers. The trace buffers are used to record a small
set of data. They have a limited capacity.

This technique reclaims the unused logic and routing
resources of FPGA without replacing the original circuit.
The major idea 13 to develop this process without
modifying the user circuit which has the limited routing
flexibility. CAD Optimization is also useful to increase the
success rate of msertions.

In Fig. 1, shows the flow of the incremental trigger
insertions in the FPGA-based prototypes. The incremental
trigger insertions allows the designer to modify the
system without making any changes to the original circuit.
The techmque that we use in this study 1s trace-support
added to the end of the normal compilation flow of the
FPGA hence, it requires small changes to make use
of trace instrumentation. Figure 2 shows the before and
after incremental techniques for the FPGA compilation
flow. The approaches in the techniques are to the
open-source VPR6.0 which is a part of the academi
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Verilog-To-Routing (VIR) with 1.0 version (“The VIR
project: Architecture and CAD for FPGAs from verilog to
routing” by Rose et al. (2012).

MATERIALS AND METHODS

Debugging procedure in circuitry: Trace buffers are
on-chip RAM memories that store a history of a set
of internal signals (referred to as trace signals) during
at-speed device operation. Here, in the FPGA, the user
circuit 18 implemented along with these Trace buffers and
signals during the at-speed device operation. This 1s
collectively known as the Debug Instrumentation. After
compilation of the system, the internal signals which are
referred as the Trace signals are then analyzed to
determine the reason for unexpected behavior of the
system. This method cen trace only the small set of
signals in a short period of time. Figure 3 shows a typical
Debugging flow in FPGA.

Tt is essential to identify the events in the trace
circuitry to make use of the trace buffer effectively. This
circuitry uses to identify the recording signal stop at a
point and 1s configures as a circular buffer as it
continuously overwrites the stored data until the event
occurs. The logic function 1s said to be the heart of the
trigger circuitry as it indicates when the trigger should be
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Fig. 3: Typical FPGA debugging flow of user circuit

occurred and relatively to the events in the user
circuit. The circuit has mainly divided into three parts:

»  Trigger function
* Inputs
»  Single trigger output

In the normal traditional systems, usually
modifications in trigger functions leads to recompilation
of the entire system mmposes to long compile times and
also expensive. But in the method we introduced, the
distribution of logic elements are desired to make up a
trigger function across the logic elements which are left
unused in the user circuitry. Using these logic elements in
the three parts mentioned above overcome the routing
failures. This contributes the distribution of the trigger
logic over umused elements and to include the CAD
optimizations in the trigger circuitry without recompiling
the entire system.

Incremental distributed trigger insertion: In this section,
we explain how the technique works in the
distribution of the trigger logics to the Logic Elements
(Les) in which the process is made in the routing phase.
In LEs, there are Look-Up Tables (I.UTs) and Registers.
Let us assume that, the user selects a trigger function and
its internal signals as the input without allowing to rip-up
and re-routing the original circuit. This process of
selection is known as the paclk-place phase. Hence, it
is crucial to consider the routability in trigger logic
pack-place phase. There are two types of routing network
connections. They are local network system and global
networking system. and now, also assuming that FPGA
has many Logic Clusters (I.Cs) and each of this have
many LEs and are all connected to the local routing
networl. and L.Cs pins are connected to the global routing
networlk. The process explained in three subsections.
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Enhancing the routability process: Here, we show how
selections are made and implementing the trigger logic 1s
implemented with unused L.LEs. The main goal of this
approach is to selecting the seed locations and
positiomng LEs i unused slots at the seed location.
Furstly, selecting the seed location 1s mainly done at the
closest point to the Logic cells since it impacts on the
minimum wire-length and the time periods of the circuit.
After msertion, the original circuit 15 fully mapped and
routed, we can definitely come to know the positions and
time periods of each input . Hence it is easy of finding the
location for the seed by knowing the source location of
each mput net and weight these position by net’s tunings
(with higher criticality and lower slack as m (V. Betz,
Architecture and CAD for Deep-submicron FPGAs)
(Rose ef al, 1999). Cnticality (Netl) = 0.1, Criticality
(Net 2) = 0.3 Packer stars Packing from (x =4,y =2),
three-times closer to Net2 than Netl. Packer will not
consider fully used logic clusters.

Secondly, choosing the unused LEs utmost near to
the seed location. For calculating the accurate results, the
substitutions are m the form of an Algorithm 1. Figure 4
gives a clear view of this process. After choosing this
start point in the trigger logic, the empty logic elements
are then packed around this start point moving circular
motion m forward direction as shown in Fig. 5. This
rotating placement strategy keeps the logic elements in
implementing the trigger logic as close together as
possible.

Levels of congestion awareness in trigger pack-place: To
avoid the routing failures, the routability in the pack-place
phase is highly recommended. High usability of these
routing resources may cause malfunctioming or failures in
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Fig. 5. CAD flow

the trigger logic routing phase. Two-level congestion
Awareness is added as a special phase to overcome the
failures in the user circuit. They are LC-level congestion
awareness and LE-level congestion awareness. This can
be summarized in Algorithm 1.

Algorithm 1 : Two-level congestion aware pack-place
algorithm
C = calculating starting point
while trigger_cells_to_place is not empty do
if CL1(C) < threshold then
T = select a logic element from
trigger_cells_to_place
unused LE list=umised LEs in .C C
foreach LE in unused_LE _list do
if LE is not congested then
pack Tin LE of C
remove T from trigger cells to place
if trigger_cells_to_place is empty then
break
T = select a logic element from trigger_cells to_place
C = gotonext CLB

If the congestion value of LC is lower than the
threshold, then the TLEs may lead to have high
congestions on their outputs. Due to this reasory, these
LEs are checked whether they are fully connected to the
routing networks. Once if it finds the bugs like un
congested LEs, pack-place inserts the trigger logic inside
LE. Toreach the goal of implementing the complete set of
the logic functions, the algorithm goes on selecting the
logic elements.

Incremental route-throughs in system: After the
selection process is completed, these trigger inputs are
routed m to each of their appropriate signals in the user
circuit and the trigger outputs are routed to the memory.
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To enhance the routability property, we use the
unused LUTs as Route-throughs in the networl.

RESULTS AND DISCUSSION

Evaluating the CAD optimizations:

Trigger insertion with incremental techniques in CAD
flow: The known concept VPR of version 1.0. by
Hung et al. (2013), The VTR Project FPGA 2012) which is
the part of the academic scenario is used in the flow as
shown m Fig. 5. Here, we proposed V6.0. of VPR to the
design network.

The flow does not need any modifications to initial
packing, placements and the routing of user circuit.
Instead the trigger circuit 1s parsed and 1s converted to
the technology-mapped netlist. and then, the process of
packing and placing phases are performed by the
algorithm. After the insertion process, the RAM memories
are then claimed as the trace buffers. The final step 1s the
direct search algorithm 1s then implemented for
routing the trigger circuitry in VRP. In this method, we
avoid to select the routing nodes that are fully occupied
mn the user circuit by modifymg this algonthm for the
best results.

Obtaining and validating the benchmark values by the
logic circuitry system: The above process flow as
described 1s then characterized by the logic cluster size as
N =10 and the lock-up table size K = 6 and the cluster I/O

flexibilities as F_, = 0.15, F_ o, = 0.10 and channel segment
length as 1. = 4. Table 1 and 2 shows the benchmark
summary of the signals in the trigger circuitry.

For each of the benchmark, an FPGA size has chosen
to be the smallest square that fits to the circuitry. The
minimum chamnel width W, (which has no debug
instrumentation) for which the circuit 1s fully routed. The
number of nets that are listed are from which the trigger
inputs are chosen. The percentages of the Free L.Cs that
are completely empty and the LEs shows the unused
which are partially used 1 the user circuit. When runming
the VRP, the default feature (allow-umrelated-clustering)
1s disabled and is as like packing in a commercial Tool
(Hung and Wilton, 2011, 2014).

The trigger function 1s a bitwise and that 1s between
32-1024 trigger signals which are randomly selected from
the Global Nets. As for the multiple runs of each test is
done, the different set of trigger signals are then chosen
for each run.

Changes mnoticeable in the circuit by method
implemetation: In this study, we explain the investigation
process by using the methodology that 1s described in the
previous study. Here, to know certain effects that are in
the routing resource availability when the insertion is
done, the W, is then increased by some percentage, let
us assume 1t to be as like W +20% as m Fig. 6. At first,
the trigger circuits with various sizes (32-1024) are
inserted into each benchmark. In this case all the

Table 1: Benchmark summary: all signals available to be used for trigger circuitry

/0 Logic cluster DSP RAM

Clircuit Used All Used All Used All Used All
Bgm 289 2400 4111 4200 11 162 0 120
LUSPEEng 216 1962 2667 2745 8 120 45 80
LU32PEEng 216 3552 9105 9213 32 378 150 252
Mceml 70 3200 7350 7400 30 325 38 208
mkDelay Worker32B 1064 1344 916 1302 0 50 41 42
mk PKtMerge 467 832 18 494 0 18 15 16
or 1200 779 800 288 475 1 18 2 12
Raygentop 544 640 277 280 9 15 1 9
Stereovision( 354 1312 1240 1271 0 50 0 30
Stereovisionl 278 1632 1889 1938 60 72 0 56
Stereovision?2 331 2848 5889 5963 213 242 0 154
Table 2: Signal percentages available for trigger circuitry

Clircuit 6-Input LUTs FFs W Global nets Free 1.Cs (%) Free LEs (%4)
Bgm 32384 5362 80 23474 2 25
LUSPEEng 22632 6630 92 16643 3 18
LU32PEEng 76211 20898 128 55873 1 17
Mceml 101858 53736 86 52226 1 9
mkDelay Worker32B 5590 2491 76 4686 30 47

mk PKtMerge 232 36 44 515 96 22

or 1200 3054 691 74 2602 39 11
Raygentop 2148 1423 60 2126 1 35
Stereovision0 11460 13405 52 8358 2 31
Stereovisionl 10290 11789 90 11368 3 52
Stereovision?2 29943 18416 92 35386 1 57
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Fig. 7: Circuit path delay increases after trigger insertion for W, +30%

mput triggers functions (32-1024) are successfully
mserted for all benchmarks with some expectations. The
circuits (LUJSPEEng, I.1UT32PEEng and mecml) have critical
path delays (90, 90 and 67 ns, respectively) and inserting
the trigger logic mcreases the delay (about 3, 2 and 2%,
respectively). These incremental delays are not that
notable and are temporarily exist during the debugging
process. The debugging instrumentation is not required
as the operating frequency of the circuit can be set as
normal.

As because of the high congestion and routing more
than estimated all free memories (154), the insertion
process utterly failed. Even the circuit
stereovisionl has a critical path delay as only 3.5 ns and

here 1s

the trigger logic increases its delay on average by
107% which 1s temporary aspect. But in other circuits as
stereo vision O stereo vision 2, mkPktMerge and
raygentop are failed since all the benchmarks are too small
to support such large triggering functions and also
wmserting  the triggering functions with 1024 size
failed for Or1200 for the same reason. To determine
the working of our technique in the circuit at less routing
congestion situations, here agamn we repeat the same
process with ncrease of mimmum channel Width as
Wi T30%. To differentiate these values, ure Fig. 7 gives
a complete reference of the percentages of each
circuits with the origmal circuit and the trigger
inserted circuit.
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Fig. 8: Comparing the circuit path delays for mimmum channel Width (W) at trace demand 0.75
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Fig. 9: Total wire length required for each of the circuit with mimmum channel width at trace demand 0.75

Tt is experimentally found that the congestion
threshold of 60% for trigger functions with sizes of 32- 512
is sufficient for successtully insertions. For sizes of 1024,
50% of threshold 1s highly necessary to use i the circuit.
The impact on run-time 1s also examined, and 13 mentioned
clearly m Fig. 8. At average, incremental-distributed
trigger insertion is 80X faster than full recompilation.

As we fix the minimum channel lengths to the
increments (0, 20, 30, 40 and 50%), it represents that the
unplementation of the circuit 1s done by utilizing the
number of FPGA routing resources. The value of the trace
demand at some pomnt be constant (say 0.75), requires the
trace wires of shorter length as shown in Fig. 9. For the

higher rates of trace demand values (say 0.5 and lesser),
they have the shorter trace-wire length and even at
maximum demand value (say 1.0) it is still within 2% after
incremental technique. From Fig. 10, it 1s clearly shown
that as the channel width increases, the instrumental wire
length decreases.

Despite of increase in wire length observed in the
above result, the difference in the path delay is less
effective on each circuit. The experimental results shows
the trace insertion 1s higher at 0.6% when compared with
the original circuit. Figure 10 shows the unpact of trace
insertion has great impact on the circuit with various
channel width values (Fig. 11).
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Features that made a difference in the circuit: The
features like wire length, delay path, route runtime vary at
different values for all circuits at minimum and maximum
trace demand Also logic utilization, memory utilization
and the maximum operating frequencies differ for certain
value. Especially reclaiming the 100% memory utilization
15 noticed for tracing and the memory blocks shows
flexability even at trace demand <1.0.

CONCLUSION

In this research, incremental compilation techniques
are mainly used to insert the trigger circuitry into the
design without requiring a full recompilation process. We
have undergone the successful results by using these
special techniques. Insertions with a short critical path
(below 18 ns) mcreases the path delay.
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