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Abstract: The level of success of spectral decision in cognitive radio networks depends on how good the

prediction model of channel usage 1s m both licensed and unlicensed bands. In this research, three different
techniques are explored to predict channel state from the pomnt of view of the use given by the primary user and
optimization of the best technicue is proposed to achieve a closer prediction to reality from the use of actual
data of a WiF1 network as validation method. The article concludes that our algorithm 1s optimal for short

history windows.
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INTRODUCTION

Cognitive Radio (CR) may be defined as an intelligent
wireless communication system that aims to provide
highly reliable data transmission through the efficient use
of the spectrum; this i1s possible by having awareness of
the surrounding environment, learming from 1t and
adapting to statistical variations in the input stimulus
(Haykin, 2005). Three stages could be defined with
different functions in a cognitive cycle (Fig. 1):

*  Detection: Search unused spaces of spectrum

*  Analysis: Identification of specific characteristics of
the unused spaces found in the detection stage

*  Decision: Selecting the frequency band at a given
time and specific location that achieves meet the
requiremnents of Quality of Service (QoS) of the user,
without causing interference to other users

Once defined the frequency band to be used,
commurmication can start, it tries to maintain
communication and quality of service provided, even if it
is necessary to change the frequency band due to some
novelty as mcreased traffic, arrival of other licensed users
i the band, etc.; thus process refers to the ability of
mobility. Fair access to the shared medium is the ability to
share and cognitive cycle with mobility capacity and
sharing are intelligent radio, cognitive  radio
(Akyildiz et al., 2006).

Decision stage: In CR two types of users are
distinguished: the Primary User (UP) who has the license
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Fig. 1: Cognitive cycle (Lopen and Sanchez, 2015)

for the use of particular frequency band and the
Secondary User (UUS) which has access and
(opportunistic) possibility of using this frequency band
without causing interference to UPs, so it looks to US use
the band at the moment that the UP not be using it
(Zhao and Swami, 2007).

Three tasks in order to ensure that the decision taken
for the secondary user 1s the most appropriate are
performed: The characterization allows to identify the
properties of each frequency band based on the historical
performance of the primary wer and the cwrent
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conditions of the spectral band. Once the characterization
process is complete, it was proceed to the selection of the
most appropriate band according to the requirements of
quality of service which carmot always be met. Finally, the
reconfiguration of the transmission parameters to
achieve a communication in the selected spectral band
(Masonta et al., 2013).

MATERIALS AND METHODS

The spectrum is a limited resource, for this reason CR
emerged to use it efficiently. This study aims to evaluate
(with real data) three predictive techniques for decision
making in the spectrum of CR wireless networks (WiF1i),
the techniques to be evaluated do not correspond to a
mathematical model but an algorithm that seeks to
reproduce the behavior channel to decide whether or not
to transmit in the channel according to the predictions
obtained, also it seeks to optimize the results obtained
making changes to the algorithm with the best
performance.

The methodology used throughout the research is
shown in Fig. 2. To conduct the study it was necessary to
use Wikl Analyzer software that would identify Access
Points (AP) and WiF1 channels, plus allowing to display
the number of clients connected to each of the APs; the
software used for the first phase of the study is Acrylic
WiFi Professional of Tarlogic (free software, student
licensed) that offers the monitoring mode, i.e., for viewing,
capturing data and flowmng Wik traffic, regardless of
whether it 18 diected to the device. Acrylic WiFi
Professional allowed to export to a CSV file
(Comma-Separated Values) data manually taken every
5 min, subsequently to join in a consolidated covering
12 h-145 measures.

Data fittng to statistical models attempts to obtain
an accurate prediction for a future time; at this stage the
data collected were taken and WiF1 chanmel behavior was
described mn terms of busy (1) and 1dle (0); then statistical
techniques of correlation, linear regression and
autocorrelation are included; these algorithms were
proposed by Uyanik. The implementation phase in
algorithms software was possible using MATLAB, the
flowchart for each of the algorithms was generated and
was taken to a code. Each one of the algorithms was
applied to different time intervals to wverify the
effectiveness of each of them. The last phase of the study
was the analysis and validation of the results was
obtained. The comparison of the prediction obtained was
performed with the channel state comresponding to the
time for which the prediction was made and concluded
which technique offers the most accurate prediction.

Data adquisition and processing: The 2.4 GHz band offers
a Bandwidth (BW) of 72 MHz m Colombia the US

Fig. 2: Phases the research mcluded

standard 1s used, having 11 chamnels available each with
a BW of 5 MHz for data transmission mn wireless
networks often uses bandwidths of 20 and 40 MHz as
5MHz is insufficient. If each AP that transmits occupies
20 MHz, then the only way to avoid interference between
channels is at a distance of at least 5 channels, that is why
channels that are used most often for WiFi networks are
1, 6 and 11. The database that was used throughout the
study was created with a collection of measurements
generated with Acrylic WiF1 Software. It was found that
the maximum number of users in the interval from 9-0 to
21-720 muinis 11 and the mmimum number of users found
in the mterval 1s 4 (Fig. 3).

Charmel 6 as it 18 default 13 the most popular, this fact
is reaffirmed to find that channel 6 hosts most of the
users, being always in the busy state; channels such as
2, 3, 5, 8 and 10 remain occupied <10% of the sampling
time, this may be due to its proximity to the most used
channels (1,6 and 11).

Because each channel has a particular behavior, all
channels and the number of users were taken to determine
whether the channel was occupied or not at a given time
(Fig. 4) allowing to identify the channels that have a
favorable behavior for a secondary user, undoubtedly the
channels that best fit would be those that remain
unemployed the most part of the time, with channel 3
being 1deal assuming a bandwidth of 20 MHz.

Data adjustment to statical models and implementation in
algorithms software: To choose the appropriate spectral
band, secondary users monitor the spectrum and obtain
predictions based on history window historical behavior
of the spectrum). The number of time intervals for which
the prediction 1s obtamned 1s called prediction window and
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Fig. 4: Channel occupancy level as a function of time
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Table 1: Channel occupation 12 h interval

Charnels Busy state Idle state
1 90 10
2 1 99
3 1 99
4 33 67
5 7 93
6 100 0

7 87 13
8 1 99
9 69 31
10 0 100
11 69 31

may consist of one or more time mtervals. Three
algorithms proposed by Uyanik were used such
algorithms represent the behavior of an independent
channel of the other three channels and apply statistical
techniques to generate a model to predict the behavior of
the spectrum. The following variables are defined:

WH: History Window (Length vector 1)

H;: State of the spectrum captured in the history window
at position i

[WH]: History window size

X Vector mdex (XX =[1,2,..., [W4]

WP: Prediction Window

d,: Correlation threshold

History Window W;: Because, the algorithms are applied
to one channel at a time, the channels history data were
used with which channel occupancy percentages were
obtained during the 12 h mterval (Table 1) and it was
found that data channel 4 would be used due to its
variable behavior with wide idle time and busy intervals.
The data processing of a chosen channel was conducted
in Matlab, applying each algorithm to the lustory window,
that is n = IWH/ and interval corresponds to the number
of predictions that want to be generated.

Threshold value 8¢: To set the threshold value used for
all algorithms it is taken into account that the Pearson’s
correlation coefficient should be not <0.1 as a lower
coeflicient would indicate no correlation and should not
exceed 0.5 as these values indicate that there 15 an
absolute correlation and all 3 algorithms would have the
same result as with real data there would not be sufficient
correlation. Tests are performed simulating WP = 0.1 and
WP = 0.3, finding that with &, = 0.1 predictions are more
adjusted to the actual data, this 1s because the signal 1s
not periodic.

Algorithm_1; correlation:
majResult-Majority (Wy)

if | corrCoefftX, Wy) [=8, then
We— [Hysy - Hywn

else

We~[majResult  majResult]

end if

retum Wy

=

Channels = historical data of 145 samples
Index =[1:145])’
n = sample size to be used
Interval = number of predictions

Ch4 = Channels (1:n,4)
Chx = ch4

Y

Interval >0 No End

Yes
maj Result = mode (chx)
delta=0.1

abs(corrcoef(ind
ex(1:n),chx)
)>delta

No

LY%

Wp = chx(end) Wp = majResult

chx = vertcat(chx, Wp)
N =n+l
interval = interval -1

Fig. 5: Flowchart algorithm 1

For this algorithm the Pearson correlation coefficient
is m easured and compared with the threshold value
(8, = 0.1), if the coefficient value exceeds the threshold
then the prediction window will settle with the last sample
of the prediction window. If there is not enough
correlation, then the window prediction is filled with the
result of the majority. Below is the flowchart for the
implemented code (Fig. 5). Data from the occupation of
the eleven channels were introduced to Matlab as matrix
(Channels) plus the index vector (index) was defined, the
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sample size which is the size of the history window (n)
and the number predictions to be obtained (intervel).
Once these data are obtained, the sample 13 drawn mn a
new vector (CHX) and is given to start a while loop that
will be repeated until completing the total number of
predictions defined above by adding a position at the end
of the CHX vector. In the while loop, the process to find
the channel state following the logic explained above is
found.

Algorithm_2; correlation and linear regression:
majResult-Majority (Wy)

it | corrCoetfiX, Wi | = &, then

Wr ~Points calculated by linear regression with binary values.

else

Wr - [majResult  majResult]

end if

retum Wr

The Pearson correlation coefficient quantifies the
degree of relationship between two variables and can be
used to generate a prediction algorithm with linear
regression.

The Pearson correlation coefficient is measured and
compared with the threshold value (&, = 0.1), if the
coefficient value exceeds the threshold, then the
prediction window will settle with points calculated using
linear regression (taking as reference 0.5, lower values
would approximate to 0 and greater values to 1). If not
sufficient correlation 1s found, then the prediction window
1s filled with the result of the majority.

The flowchart for the mmplemented code (Fig. 6)
shows that as m the above algorithm, the data 1s taken
and the variable “index”, “n”, “intervel” and “chx” are
defined to start the “while” loop under the logic of the
algorithm previously explained.

Algorithm _3. Autocorrelation:
majResult-Majority (W)

Calculating autocorrelation coetficients with a maxirmum delay |Wy//2
maxCoeff ? max(coefficients)

if | corrCoeff(X, Wy) | > &, then

Periodicity ? delay de maxCoeff

Wr~Points calculated with the periodicity of the signal.
else

Wi~ [majResult  majResult]

end if

retum We

This algorithm calculates the coefficients of the
autocorrelation with a maximum delay of half the
magnitude of the history window, from these coefficients
the lighest one 18 chosen and the delay
corresponding to highest coefficient defines the
periodicity of the signal.

=

A

Channels = historical data of 145 samples
Index =[1:145]'
n = sample size to be used
Interval = number of predictions

I

Ch4 = Channels (1:n,4)
Chx = ch4

Interval>0\ No End

Yes

r = polyfit(index(1:n),chx,1)

((index(n)+1).*rl No
‘ ()+r1(2))<0.5
No
L Yes
Wp=0 Wp = méjRe;.Jlt

I Eﬂ [

A

Chx = vertcat(chx, Wp)
n=n+l
interval = interval -1

Fig. 6: Flowchart algorithm 6

Whenever, the Pearson correlation coefficient 1s
greater than the threshold &, = 0.1), the result of the
prediction is calculated according to the periodicity;
otherwise, the prediction window settles for the last
sample of the prediction window. Below 1s the flowchart
for the mnplemented code (Fig. 7) as in the above
algorithms, the data is taken and the variable “index”, “n,
“interval” and “chx” are defined to start the
“while” loop under the logic of the algorithm
previously explained.
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Channels = historical data of 145 samples
Index = [1:145]
n = sample size to be used
Interval = number of predictions

v

Ch4 = Channels (1:n,4)
Chx = ch4

>

Interval>0 End

Wh2 = floor(lenght(chx)/2)
[ACF,lags, bounds] = autocorr(chx, wh2)
lag =

max (abs(A CF(find(abs(ACF)>max(ACF)))))

abs(corrcoef(inde
x(1:n), chx)) >
delta

Wp = majResult

ACF=10*ACF
periodicity = lags(find(abs(ACF2) = 10.*|ag))
Wop = chx(end-periodicity+1)

Chx = vertcat(chx, Wp)
n=n+1
interval = interval -1

Fig. 7: Flowchart algorithm 3
RESULTS AND DISCUSSION

The analysis focused on the use of channel 4
regardless of other channels and the relationship between
them since, the proposed algorithms define it so, it is
noteworthy that the APs mostly have a fixed chamnel
assigned and the data obtained with Acrylic WiFi

Professional indicate that there was never >1 user in
channel 4, unlike channel & which was always busy and
has 3 users on average.

Below are the results
(correlation, correlation  and
autocorrelation) for 5 different time intervals: 41,
61, 81, 101 and 121 samples; graphs show 2 series, the
reddish color with points demarcated with “+ are
the actual data and blue with points demarcated
with “0” are the interval taken and predictions in the
last places.

of three

linear

algorithms

regression,

Interval of 41 samples: The simulation is performed to
predict 20 intervals and the same prediction is obtained
with the 3 algonithms (Fig. 8), this 1s because in all cycles,
the Pearson coefficient found 1s greater than the threshold
of 0.1, this in the case of algorithm 1, means that will
replicate the last sample in all predictions; in the case of
algorithm_2 the line obtained always has a negative slope,
making the prediction O for all time slots; in the case of
algorithm 3, it tries to find periodicity in the data signal
and since the signal is not periodic the periodicity is
minimal and brings the data near the end of the chain
having 0 for all predictions.

Interval of 61 samples: Different results for each
algorithm are found; Algorithms 1 and 2 show an opposite
behavior; by mcreasing the number of predictions for
algorithm 1, its accuracy decreases (Fig. 9), in thus case
the value of the Pearson coefficient does not always
exceed the threshold and since the number of samples is
small, the result of the majority matches the one of the last
sample, always getting “0” for all predictions.
Algorithm 2 manages to increase accuracy with the
number of predictions (Fig. 10), the Pearson coefficient
exceeds the threshold for all predictions and when
evaluated with the equation 1t results always mn a
straight line with a positive slope, obtaining “1” for all
predictions. Algorithm 3 is inaccurate for any number of
predictions since the signal 1s not periodic (Fig. 11).

Interval of 81 samples: Different results for each
algorithm are found; algorithm 1 and algorithm 3 present
the same result, the accuracy decreases with increasing
number of predictions (Fig. 12).

Algorithm_2 is not reliable for this interval, since the
predictions obtained are not correct, only one from 20
possible predictions 1s successful (Fig. 13).

Interval of 101 samples: The same result for the three
algonthms, matching the prediction with the data actually
obtained (Fig. 14).
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algorithm 1 Fig. 12: Results for the interval of 81 samples using

algorithm_1/algorithm 3
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Fig. 10: Results for the interval of 61 samples using
algorithm 2 Fig. 13: Results for the interval of 81 samples using

algorithm_ 2

Interval of 121 samples: The same result for the three
algorithms, matching the prediction with the data obtammed 1t 18 necessary to verify that the channel was the right
n reality at all points except one (Fig. 15). Precision for ~ choice, so then it i1s decided to explore the channel

prediction windows is tabulated below (Table 2). decision in further. To obtain the candidates for the

channel in which the secondary user will transmit
Discussion and optimization of channel state prediction: intervals with the same number of samples as those
Since, the results for the first mtervals are unsatisfactory, used for evaluation of the algorithms were taken and
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Table 2: Precision for prediction windows
Predictions
Samnples Variables 3 (%) 10 (%) 20 (%)
41 Alg 1 100 40 30
Alg2 100 40 30
Alg3 100 40 30
61 Alg1 66.67 30 20
Alg2 3333 70 80
Alg3 3333 20 15
81 Alg1 100 70 40
Alg2 0.00 0 5
Alg3 100 70 40
Alg1 100 100 100
101 Alg2 100 100 100
Alg 3 100 100 100
121 Alg 1 100 90 95
Alg2 100 90 95
Alg 3 100 90 95

considering that the channels that are most interval
occupled would not be a candidate suitable for a US to
transmit, such chamnels are excluded; assuming a
bandwidth of 20 MHz for transmission and considering
that 1t 13 mtended not to cause any interference to UP 1s
also necessary to disqualify the immediate neighbors of
these channels. The data obtaned are shown m Fig. 16
which shows in dark blue color the channel which is most

Siunple number

| b [ =

Channel

Fig. 16: Channel eligibility

of the time busy, light blue its immediate neighbors and
blank the chammels that up until to that sample were 1dle
most of the time.

These data clearly show that it was not wise to
transmit in the interval of 81 samples, in which the worst
performances were obtained when algorithm 2 only
matches to a position of 20.

Since the accuracy of the algorithms for shorter
intervals (41 and 61 samples) 13 not very good, it was
sought to modify the algorithms to achieve greater
precision, so algorithm 1 was taken to be the one that
offers greater efficiency and is modified by combining it
with algorithm 2 (Fig. 17) which is the one more offering
greater precision with increasing number of predictions in
the interval of 61 samples.

Below are the results obtained for the mnterval of 61
samples (Fig. 18) which presents an improvement to
algonthm_1 with an accuracy of 66.67% for 3 predictions,
80% for 10 predictions and 85% for 20 predictions, these
results are undoubtedly better than those obtained with
other algorithms; for the remammg intervals the same
result was obtained.

Performance evaluation with the best algorithms in
terms of performance: Tests were also conducted with
data obtained with the energy detection method using
a spectrum analyzer; the data sequence comprising
1000 samples spaced 290 msec equivalent to an mterval of
4.8333 min (Fig. 19); it should be noted that measurements
were taken during a week in December 2015 and
correspond to a research by the University Francisco
Jose de Caldas.
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Channels = historical data of 145 samples
Index =[1:145]'
n = sample size to be used
Interval = number of predictions

v

Ch4 = Channels (1:n,4)

Chx =ch4
Inte'va|>o/
, Yes
| delta=0.1 |
abs(corrcoef(in N
dex(L:n),chx) °
)>delta
Yes
v

Wp = chx(end) Wp = chx(end)
((index(n)+1)
Fri()+r1(2)<

0.5
No
+ . Yes
o] [
P |
A 4
chx = vertcat(chx, Wp)
n=ntl
interval = interval-1

Fig. 17: Flowchart for modified algorithm 1

This test is performed in order to check the operation
of the algorithms with better performance (algorithm 1
and algorithm _1-modified) (Fig. 20) using a more robust

(12):2729-2739, 2016
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Fig. 20: a, b) Results for the mnterval of 451 samples using
algorithms: 1 (Top) and 1-modified (Bottom)
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Fig. 22: Results for the interval of 851 samples using
algorithms: 1 and 1-modified

database and taking Iistorical of 451, 651, 851, 951 and 979
samples. Below there are graphics with the results
obtained (Fig. 20-24) using algorithms 1 and 1 modified, it
can be noted that as the history window grows, the
accuracy of prediction obtained with algorithms decreases
to the point that when the size of history window is too
large the steps that follow the algorithm are the same for
each iteration as the Pearson correlation coefficient
never exceeds the threshold value (&, =0.1). It 1s also
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Fig. 23: Results for the interval of 851 samples using
algorithms: 1 and 1-modified
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Fig. 24: Results for the interval of 979 samples using
algorithms: 1 and 1 -modified

Table 3: Precision for prediction windows

Predictions
Samples Variables 3 10 20
451 Alg1 100 50 35
Alg 1m 100 100 90
651 Alg1 100 90 45
Alg 1m 100 90 70
851 Alg1 66,67 50 30
Alg Im 66,67 50 30
951 Alg1 100 30 50
Alg Im 100 30 50
979 Alg1 100 80 50
Alg 1m 100 80 50

noteworthy that as in previous tests the best performance
corresponds to algorithm 1 modified, presenting a
different behavior from algorithm 1 for history windows
with a fewer number of samples. Precision for windows
prediction is tabulated in Table 3.

CONCLUSION

According to the results obtained for prediction
windows, the algorithm providing the most accuracy

2738



J. Eng. Applied Sci., 11 (12): 2729-2739, 2016

regardless of the length of the history window is
algorithm 1 however, the combination of algorithm 1 and
algorithim 2 provides substantial improvement for shorter
history windows; it should be noted that long-term
predictions are not reliable because there are no exact
patterns that define the use/disuse of channels.

Although, the analysis was performed for a single
channel its results are reliable since others (Kone ef al.,
2012) have shown little or no correlation between channel
use patterns. For areliable prediction the best option is to
obtain predictions for few time slots and constantly
feeding back the database with actual occupancy data as
time passes.
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