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Abstract: The Vehicle Routing Problem (VRP) can be described as the problem of designing optimal delivery

or collection routes from one or several depots to a number of geographically scattered cities or customers,

subject to side constraints. The dynamic case of thus problem where the information 1s not completely known
in advance has not received enough consideration. In our research, we consider this case which new requests

are received along the day. Hence, they must be serviced at their locations by a set of vehicles in real time

minimizing two objectives simultaneously: the total travel distance and the response time of customers. The

main goal of this research is to propose a mathematic model and to find a solution for our problem using an

umnproved evolutionary algorithm. The experimental results show that the proposed approach proved to be

successful on a variety of benchmark instances in terms of solution quality.

Key words: Vehicle routing problem, dynamic requests, bi-objective optimization, mathematic model, improved

evolutionary algorithm

INTRODUCTION

The objective of VRP 1s to serve a set of customers at
minimum cost such that every node is visited by exactly
one vehicle only once, subject to side constraints. The
VRP plays a central role in the fields of physical
distribution and logistics. Huge research efforts have
been devoted to studying the VRP since 1959 where
Dantzig and Ramser (1959) have described the problem as
a generalized problem of Travelling Salesman Problem
(TSP).

In the static version of this problem, it 13 assumed
that all customers are known in advance for the planning
process. However, it may be the case that customers,
routing costs or service times become available mn the real
time once the service has begun. Due to the recent
advances 1n information, positioming systems and
communication technologies, it is now possible to study
such dynamic problems. The first reference to a dynamic
vehicle routing problem is due to Wilson and Colvin
(1977). They studied a Dial-A-Ride Problem (DARP) with
a single vehicle in which customers requests are tripping
from an origin to a destination that appear dynamically.
Their approach uses insertion heuristics able to perform

well with low computational requirement. Later research
(1980) introduced the
immediate request: a customer requesting service always
wants to be served as early as possible, requiring the

by Psaraftis concept  of

immediate re-planning of the current vehicle route. They
propose a dynamic-programming algorithm for the static
case as well as an adaptation to the dynamic context
tested on a ten-customer nstance.

The most commoen source of dynamism mn vehicle
routing 1s the online arrival of customer requests during
the operation. More specifically, requests can be a
demand for goods (Minic and Laporte, 2004,
Hvattum et al, 2007, Mes et al, 2007) or services
(Bertsimas and Ryzin, 1991; Beaudry et al., 2010),
travel time, a dynamic component of most real-world
applications has been recently taken into account
(Fleischmann et ai., 2004; Chen ef al., 2006, Guner et al.,
2012) while service time has not been explicitly studied
(but can be added to travel time). We cite also some
recent works which consider dynamically revealed
demands for a set of known customers (Secomandi,
2000, Novoa and Storer, 2009) and vehicle availability
(Li et al, 2009, Mu et al., 2011) in which case the source
of dynamism 1s the possible breakdown of vehicles.
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In our research, we consider the Vehicle Routing
Problem with Dynamic Request (VRPDR) (or Dynamic
Vehicle Routing Problem DVRP) with capacity and time
duration constraints which was introduced by Kilby et al.
(1998) and further refined by Larsen and Madsen (2000)
and Montemanni et al. (2005). These authors proposed
some benchmark mstances for the DVRP and presented a
study on how the degree-of-dynamism affects the final
travel costs. Montemanni et al. (2005) who extended
work (Kilby e al. 1998), considered a DVRP as an
extension to the standard VRP by decomposing a DVRP
as a sequence of static VRPs and then solving them using
an Ant Colony System (ACS) algorithm. We quote also
some other works for the DVRP (Branchini et al., 2009)
presented an adaptive granular local search heuristic;
(Creput ef al., 2012) proposed the Self-Organizing Map
(SOM) neural network into a population based
evolutionary algorithm (Khouadjia et al., 2012) studied a
Particle Swarm Optimization (PSO) and a Varable
Neighborhood Search (VNS) (Messaoud et af, 2013)
proposed a Hybrid Ant Colony System (Larsen and
Madsen, 2000) applied the relocation strategy,
Branke et af. (2005) and Thomas (2007) implemented the
wailting strategy m various frameworks for the DVRP.

As for static VRP, a lot of different versions of the
DVRP have been studied. For example, the dynamic
VRPTW 18 recognized as a standard problem well suited
to allow comparative evaluations of heuristics and
metaheuristics for a common set of benchmarks. To solve
this problem, an Tmproved Large Neighborhood Search
algorithm 13 studied by Lianxi (2012), an Ant Colony
System algorithm 1s adapted by Elhassania ef al. (2013),
an improved variable neighborhood search algorithm is
proposed by Xu et al (2013), the column generation
scheme is introduced by Qureshi et al. (2012), the
adaptation of the parallel Tabu Search (T'S) framework 1s
proposed by Taillard et al. (1997) and the relocation
strategy is applied by Bent and Hentenryck (2007),
Ichoua et al. (2006) and Hentenryck and Bent (2006).

Various other DVRP studies exist in the literature. We
cite for example, Azi et al. (2012) which considers a
vehicle routing problem where each vehicle performs
delivery operations over multiple routes during its
workday and where new customer requests occur
dynamically, Sambola et al. (2014) which studies the
dynamic multiperiod vehicle routing problem with
probabilisic mformation, an extension of the dynamic
multiperiod vehicle routing problem in which at each time
period, the set of customers requiring a service in later
time periods is unknown but its probability distribution is
available which presents an algorithm based on an ant
colony system to deal with a broad range of dynamic

capacitated vehicle routing problems with time windows,
split delivery and heterogeneous fleets, Larsen and
Madsen (2000) which examines the traveling salesman
problem with time windows for various degrees of
dynamism where he proposes a real-time solution method
that requires the vehicle, when idle to wait at the current
customer location until it can service another customer
without being early and Pureza and Laporte (2008) which
uses waiting and buffering strategies for the dynamic
pickup and delivery problem with time windows. In the
last, we cite the researches by Kaiwartya et al. (2015) and
Ghannadpour et al. (2014) which study m the last years,
a multiobjective dynamic vehicle routing problem by a
particle swarm optimization and a genetic algorithm
respectively.

In this study, we study the Bi-objective Vehicle
Routing Problem with Dynamic Requests (B-VRPDR) with
capacity and time duration constraints. For that, we divide
the day in periods of equal duration. A request arriving
duning a time slice 1s not handled until the end of the time
bucket, thus during a time slice we only consider the
requests known at its beginning. Hence, an Improved
Evolutionary Algorithm (IEA) 1s run statically during each
time slice. This discretization 1s possible by the nature of
the requests which are never wgent and can be
postponed. The rest of this paper is organized as follows:
The second section presents the mathematic model
for the B-VRPDR, then in order to solve this problem, an
Improved Evolutionary Algorithm (TEA) is proposed in
the third section. The experimental results and discussion
are reported 1n the fourth section. Finally, we conclude in
the last section.

MATERIALS AND METHODS

In order to model the B-VRPDR, we use the event
manager which serves as an interface between the
arrival of new orders and the optimization procedure.
This manager divides the working day into n, time slices
T={T,, T,, Y, T}, each with an equal length of time T/n,,
where T is the length of the working day. Each of time
slices represents a partial Bi-objective Vehicle Routing
Problem with Static Requests B-VRPSR where the event
manager runs i sequence the solving algorithm on
the B-VRPSR problems. From the solutions provided by
the algorithm, we decide about commitments within an
advanced commitment time, t_.

The first B-VRPSR created for the first time slice
considers all orders left over from the previous working
day. The time cut-off, t,, parameter controls the time in
which new orders may amrive and thus may leave some
customers unserved. These customers are carried over to
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the next working day. All the orders received after the t,,
are interpreted as being customers that were not serviced
the day before. This means that the optimization starts
with customers who would have missed servicing
vesterday because of the time cut-off.

The next B-VRPSR will consider all orders received
during the previous time slice as well as those which have
not been commuitted to drivers yet. In our simulation, each
vehicle m starts from the location of the last customer
committed to it with a starting time corresponding to the
maximmum between the end of the serving time for this
customer and the beginning of the next time slice and with
a capacity equal to the remaining capacity after serving all
customers previously committed to vehicle m.

At the end of each time slice, the best solution 1s
chosen and orders with a processing time (the processing
time of an order starts when the vehicle assigned to it has
to leave from its previous customer in order to travel to
the next customer) starting within the next T/nqt,
seconds are committed to their respected vehicles. When
any vehicle has used all its capacity, it is sent back to the
depot.

Let Ny, the set of the orders known from the previous
day if 1 = 1 and the set of the orders received at the
previous time slice and the orders which have not been
committed to drivers yet if 10{2, Y, n,.;}. At the beginning
of the working day, the location of all the vehicles 1s set
at the depot. A static problem B-VRPSR is created mn each
time slice, after it will be modeled and solved with the
procedure that will be described in the following.

We note that O, = {0,, YmeOM} is the set of the
locations for the vehicles m at the beginning of the time
slice T, where the 0, is the last customer served by the
vehicle m before the beginming of the time slice T, if;
1042, Y, n,} and the depot that correspondsto O if1=1 or
if the vehicle m has not been used in the previous time
slices T,(i<1).

The static problem B-VRPSR corresponding to the
time slice T, 1s defined by an undirected graph G, =(V,.E})
where Vi=N; U{0.0,} 15 the set of vertices and:

E, = {{(i,j)/i,j€ Ny eti# B UL {/ie O et je N}
Ui, j)/ie Ny et j=0}}

is the set of edges. A non-negative cost d; and a travel
time t; are associated with each edge {1, j} OF,; each vertex
10N has non-negative weights associated with it, namely,
a demand q; and a service time s;. A set M of identical
vehicles of capacity Q at depot 0 is used to visit the
customers.

For every time slice, a set of vehicles must serve the

customers of Ny, at a least value of our objective and such

that the total demand of the vertices visited does not
exceed the vehicle capacity and the maximum route
duration is limited. Let L is a very large number, Q',, is the
total quantity ordered by customers already committed to
vehicle m before the beginning of time slice T, and D', is
the maximum between the end of the service for 0, and
the beginming of time slice T,. The decision varables are
defined as follows:

m
le

1 if vehicle m drives from customeri to customer j
0 otherwise
1 if vehicle m visit customer i
yl = :
0 otherwise

The static B-VRPSR for each time slice T,€T can be
formulated as the following mnteger program.

Objective function: We consider two different objectives.
The minimization of the total distance of transport which
can be expressed by:

fi=Min 3 ¥ dx”

meh i, jeVy

The mimimization of the customers response time
which corresponds to the time between customers
reception and service requests debut. This objective 1s:

f, =Min ¥ (ds, —td,)

ieNy
Where:
tde[0, T] = The demand occurrence time
ds, = The time when the service starts for that

demand

Our objective function is composed by two different
objectives which aren’t on the same scale. To optimize
these objectives, we used the aggregation method which
combines the various fimctions of the problem mto a
single function; so the problem 1s to minimize:

f =Min i et

i=1

where, reflects the relative importance of the objectives
and are the constants which put to the same across the
various objectives. The constant is given by where is the
optimal solution associated with the only objective
function. The objective function is then:
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f= Min% ¥y duxl’f+% N (dstd) i#j (1)

1 meMi, V) 2 1eNg

Constraints: Our objective is minimized under the
following constramts:

Y x5 <1 vme M (2)
1GNT1
E Xg = E X Yme M (3)
1€Ng 1€ Ng
EyImSL.EXjE Vme M (4)
ieNTl jeNTl
X =1 Wje Ny (3)

Xf = x:' Vie NTI, vme M (6)
€Ny U0} JENT {0}
Qu+t ¥ qy"<Q vme M )
1€ Ng
D+ Exg‘tij+ EsiyimST ¥me M (%)
i, €V i€ Ny
X7 {01} Vi, je V, vine M @)
yre oy vie Vi, vmeM (10

Constraints (Eq. 2-4) ensure that all vehicles start at
the last customers have been commaitted to it and return to
the depot. Constraint (Eq. 5) guarantees that each node,
except the depot is visited by a single vehicle.
Furthermore, the constraint (Eq. 6) assures that each
node, except the depot is linked only with a pair of nodes,
one preceding it and the other following it. Constraint
(Eq. 7) ensures that vehicle cannot exceed its capacity.
The maximum route duration 1s limited by Eq. 8. Fmally,
the constraints (Eq. 9 and 10) guarantee the binary of the
decision variables.

An improved evolutionary algorithm for solving the
B-VRPDR: The dynamic vehicle routing problem calls for
online algorithms that work in real-time since the
immediate requests should be served, if possible. As
conventional static vehicle routing problems are NP-hard,
it is not always possible to find optimal solutions to
problems of realistic sizes in a reasonable amount of
computation time. This implies that the vehicle routing
problem with dynamic requests also belongs to the class

of NP-hard problems, since a VRP with static requests
should be solved each time a new immediate request 1s
received. In our research, to solve the B-VRPDR, an
Improved Evolutionary algorithm (IEA) 1s executed for
each B-VRPSR created at each time slice as described
above.

In this study, we adapt our proposed algorithm for
each B-VRPSR for solving the B-VRPDR. For that, we
maintain a set of solutions, through a fixed mumber of
iterations (Fig. 1). Every solution 1s assigned a fitness
which is directly related to the objective function of this
solution. Thereafter, the population of solutions is
modified to a new population by applying two operators:
Recombination and mutation. At the end of the iteration,
a replacement operator is applied to select the solutions
for the next generation. We work iteratively by
successively applying these three operators in each
generation until a termination criterion 1s satisfied. The
proposed evolutionary algorithm is a genetic algorithm
with the following differences:

*  We adopt a new generation of the mitial population
instead of doing it in a random way

»  We use a new operator of the crossover adapted
especially to our problem

These meodifications can help us to have good
solutions in the shortest time which 1s very important in
the dynamic environment.

Encoding the solutions: The first step in defining an
Evolutionary Algorithm 15 to link the real world to the

[ Initial population ]
v
[ Evaluation ]

¥

Selection
v
Crossover
¥
Mutation
v

[ )
[ ]
( )
( Replacement )
( )
[ J

v
Next population
v

Stopping criteria

Yes

A J

[ Best individual of the population ]

Fig. 1: General structure of an evolutionary algorithm
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Fig. 2: Example of a solution with 3 vehicles and 10
customers

evolutionary algorithm world that 1s to set up a bridge
between the original problem context and the problem
solving space where evolution will take place. The choice
of an appropriate coding scheme to represent the
potential solutions is the key for the proposed algorithm.
The representation scheme used in our work 1s composed
of the routes of the vehicles at each time slice T,. Each
solution contains K integers where K is the number of
customers of Ny. As an example, the Fig. 2 represents a
solution for a time slice T, where the route 1 15 served by
vehicle 1 that wvisits the ordered list from the first
customer, starting with 0, to the last customer 8 before it
returns to the depot.

Initial population: The 1mtial population 1s
generated using a new procedure to create each solution
(an individual in the population). Tn what follows we
explain this procedure which generates a feasible solution
of high quality to accelerate algorithmic convergence in
order to have a good final solution as soon as possible for
each time slice T;: we generate randomly a partial selution
S, for N°5, which represents 50% of customers selected
randomly from Ny, via the construction of the routing of
available vehicles, begmmng with the first one and
mserting the requests m its trajectory. If the capacity of
the vehicle reached the partial capacity Q. presented by
the relation (Eq. 11), we take the second one, until all the
customers of N’ have been served. The construction of
S, is done for 50% of Ny that’s why we use the half of
capacity Q° (Q" 15 the total capacity plus the current
capacity of the velicle m) and since the demands for some
customers of N’ may exceed this capacity making it
umpossible to msert them, we define the partial capacity as
follows:

h o= max(mf}qu , Q72 (1

This partial capacity i1s introduced to add the
clients of N/N' which are inserted into the best

P1 P2
0,/2|5/3|9|0 0, /9|7 8|0

0, 7 10[1]0
[0, a[8][6o0] [0s(1 4|10 0

io,,4sis|a o,/9[7][8]0
a8z
|n,l253|90 0,/ 9|0
0,101 0 [o.[6]3]2]s]0
0, 6|0 05 1 100]
c1 c2

[0,/ ]7]a]a
[0.] & 3:z|5'u

io,, 1|8 1o|n

Fig. 3: Example of recombination

positions of the partial solution S, in order to find a
complete solution representing an individual of the
population without constraint violations.

Evaluation function (fitness function): The role of the
evaluation function 1s to represent the quality of the
solution. It forms the basis for selection and thereby it
facilitates improvements. In this research, we define the
fitness function of each solution in the population by the
inverse of the objective function defined by the relation
(Eq. 1)
1

)\;’: E 2 leXIJn + )f\:»«z 2 (dSl _td1) (1 2)

fl mel 1, =7 2 1GN1-l
1#]

Recombination: A binary variation operator is called
recombination or crossover. As the names indicate such
an operator merges information from two parents into one
or two offspring. The 1dea belind a recombination is to
seek the convergence towards a solution that may be
best, producing two children with two parents which are
randomly selected from the population of individuals.
This operator is applied, using a crossover probability p,,
as follows: a route from each parent is randomly selected
and the customers presented between two pomts selected
randomly in each route are removed from both parents
and reinserted at the location which mimimizes our
objective in each parent. This requires the computation of
the insertion cost for the selected customers in all
possible locations of the solution, without constraint
violation, creating a new route if no possible msertion for
a particular client 1s found. Figure 3 helps to illustrate how
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Fig. 4: Example of mutation

our recombination acts. In this example the routes 3 and
1 are selected randomly from P1 and P2, respectively then
two points are chosen randomly from the selected routes.
The customers 4, 8 and 7 presented between the selected
points are removed from both parents, then they are
reinserted to the location which minimizes our objective in
each parent.

Mutation: After the recombination, the strings are
subjected to mutation. This operator prevents the
algorithm to be trapped in a local minimum and it has
traditionally considered as a simple search operator using
a mutation probability p,. If the recombmation is
supposed to exploit the current solution to find better
ones, the mutation is supposed to help for the exploration
of the whole search space. This operator 1s applied on a
randomly selected solution from the current population,
using the principle of swapping two random clients in a
randomly selected route. Figure 4 we show an example of
this operator.

Replacement: During the creation of the new population,
Sometimes the good chromosomes can be lost after
recombmation and mutation results. To avoid this, we
form an intermediate population P, which comprises the

current population P, and the new solutions found from
the recombmation and the mutation operators, then we
use the principle of elitism method where one or more of
the best clromosomes are copied in the new generation.
In our case, the 50% of the new population P, contains
the best solutions of P, then the other part of P, will
be completed by randomly selected solutions from P,
and which have not inserted into P,.;. This replacement
improves significantly our evolutionary algorithm because
it allows that the best solutions can’t be lost.

RESULTS AND DISCUSSION

A computational experiment has been conducted
to compare the performance of the proposed algorithm
with some of the best techmques designed for VRPDR.
The algorithm has been tested with 22 VRPDR benchmark
problems by Kilby et al. (1998). These benchmark
instances  are  derived from the conventional
available VRP benchmark data, namely Taillard (1994)
(13 benchmarks instances), Christofides and Beasley
(1984) (7 benchmarks instances ) and Fisher and Taikumar
(1981) (2 benchmarks instances). The number of
customers ranges in [50, 385] and the service area may
consist of uniformly distributed customers, clustered
customers or a combination of both. The proposed
algorithm has been implemented m C++ and the
experimental tests were carried out on a MacBook
Pro-Core 15/ 2.4 GHz-MacO$ X 10.7 Lion.

The cut-off time t_, and the advanced commitment
time t,, are set to T/2 and 0, respectively. The total length
of the working day T 1s 1500 seconds and according to
Montemanni et al. (2005) the best number of time slices n,,
is 25. To evaluate the effectiveness of the proposed
approach, this latter must be compared with other works
of the literature for that we will present firstly the
numerical results by considering only the classic
objective which minimizes the total traveled distance. In
the following, we study the choice of parameters because
it i3 so important for the success of the proposed
approach. To optimize the choice of these parameters, we
apply the Taguchi method which 15 an experimental
design that analyzes the effects of several variables
(parameters) on the response {objective
function). The results obtained by the execution of the
problem are evaluated by transforming the value of the
objective function (Signal/Noise). The 3/N rate is
calculated using the formula expressed as follows:

variable

§/N :71010g(iiyf) (13)
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Fig. 5: Graphic of main effects
Table 1: Levels of the IEA parameters
Levels Np Pm Pr
1 20 0.6 0.05
2 50 0.7 0.10
3 100 0.8 0.20
Table 2: The values of the IEA parameters
Parameters Tp Pr Pm
¢S50 10 0.7 0.1
c75 10 0.6 0.2
c100 10 0.6 0.1
c100b 10 0.5 0.2
cl20 10 0.6 0.1
cl50 10 0.6 0.2
cl99 10 0.5 0.2
tai75a 10 0.6 0.1
tai7sh 10 0.5 0.3
tai75c 10 0.7 0.2
tai75d 10 0.5 0.3
tail00a 10 0.6 0.3
tail00b 10 0.5 0.1
tail(0c 10 0.6 0.1
tail00d 10 0.6 0.2
tail50a 10 0.6 0.1
tail50b 10 0.7 0.1
tails0c 10 0.7 0.1
tail50d 10 0.5 0.2
tai38s 10 0.5 0.1
171 10 0.7 0.2
f134 10 0.6 0.2
Where:
n = the number of executions
v, = The objective function value of the solution found

during the execution i

We apply the Taguchi design with three levels which
consists to define three levels for each factor. The goal 1s
to define the effects of each factor on the response (y).
We use Mimtab software tool to fix different parameters
of our TEA. The influential factors results in our study are
defined as follows:

* X, population size (Np)
+  x,; mutation probability (Pm)
*  x; recombination probability (Pr)

We define in Table 1 a 3-level of values for Np,
Pmand Pr. Figure 5 shows that the best results are
obtained using the following wvalues of different
parameters of our approach for the instance ¢50: Np = 10,
Pr=07,Pm=0.1.

We precede similarly for the other instances and we
obtained the results represented in Table 2 where we can
see that the population size 1s fixed for all nstances but
the crossover rate and the mutation rate change from
instance to another.

Table 3 shows the results of our algorithm which
correspond to the best value and the average of five runs
for 22 different instances of 50-385 requests. Each run is
guaranteed to be independent of others by starting with
different random seeds. A comparison of the solution
quality in terms of minimizing travel distances 1s done
between our TEA and other metaheuristics proposed
previously m literature. These metaheuristics are GRASP
and ACS algorithms proposed by Montemanni et al.
(2005), DAPSO and VNS algorithms proposed by
Khouadjia ez al. (2012) and our ACOLNS algorithm
(Messaoud et al., 2013).

As we can see owr approach is very competitive. Tt
outperforms Montemanm’s Grasp algorithm  and
Montemanni’s ACS algorithm on 20 and 16 benchmark
instances, respectively. Furthermore, 1t outperforms
Khouadjia’s DAPSO algorithm and Khouadjia’s VNS
algorithm on 8 benchmark instances and it outperforms
Messaoud’s ACOLNS algorithm on 14 benchmark
instances.

The proposed approach is better than all these
metaheuristics on 6 benchmark nstances: ¢120, tai75a,
tail00a, tail 00c, tail 00d et tail 50c and it finds a feasible
solution, unlike the GRASP, ACS, DAPSO and VNS
algorithms which are not tested or feasible solutions
carmot be obtained for the tai385 benchmark mstance. Our
approach provides also the shortest average for the
travelled distance on 15 benchmark instances.

Despite the constructive aspect of the ACO algorithm
has a large effect on results because each ant, during its
path construction, selects stations which mmimize the
total distance, owr TEA performs better on certain
benchmarks that ACS algorithm (Montemanm et al., 2005)
and the ACOLNS algorithm (Messaoud et al., 2013) due
to the new construction to generate an initial population
and the crossover proposed which accelerate algorithmic
convergence. All these results allow us to say that our
TEA is effective and shows the viability to generate very
high quality solutions for the VRPDR.

Now, to evaluate our approach to solve B-VRPDR
problem which minimizes the total distance and the
response time of customers, Table 4 shows our
experimental results for this problem where we set the
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Table 3: Numerical results of our approach for VRPDR cormpared to other metaheuristics

GRASP ACS DAPRO VNS ACOLNS TEA

Parameters Best Average Best Average  Best Average  Best Average  Best Average  Best Average
c50 696,92 719.56 631.30 681.86 575.89 63238 509,53 653.84 601.78 623.09 588.02 606.22
c75 1066.59 1079.16 100938 104239 97045 1031.76  981.¢4 1040.00 1003.20 1013.47  984.92 1008.23
cl00 1080.33 1119.06  973.26 1066.16 98827 1051.5 102292 1087.18 987.65 1012.30 99237 1044.97
c100b 97839 102212 944.23 1023.60 92432 264.47 866.71 942.81 932.35 943,05 897.07 937.06
cl20 1546.50 164315 1416.45 1525.15 127688  1457.22 128521 1469.24 1272.65 1451.60 126754 143357
cl50 1468.36 1501.35 134573 145550 1371.08  1470.95  1334.73  1441.37 1370.33 1394.77  1388.35 1408.21
cl199 1774.33 1898.20 177104 184482 164040 181855 167965 1769.95 1717.31 1757.02 1707.81 1735.35
tai75a 1911.48 200544  1843.08 194520 181607 193528 1806.81 1954.25 1832.84 1880.87 179946  1884.81
tai7sb 1582.24 1758.88  1535.43 170406 144739 1484.73 1480.70  13560.71 1456.97 147715 150552 1544.72
tai75c 1596.17 1674.37 157498 165358  1481.35 16644 1621.03  1746.07 1612.10 1692.00  1492.13 1546.40
tai7sd 1545.21 1588.73 147235 152900 1414.28 149347 144650 1541.98 1470.52 1491.84 144788  1469.88
tail00a 242707 251029 237592 242838 224984 237058  2250.50 2462.50 2257.05 2331.28  2221.60 228534
tail00b 2302.95 2512.27 228397 234790 223842 238554  2169.10  2319.72 2203.63 2317.30 2246.07 235272
tail00c 1599.19 170440 156230 1655.91 153256 1627.32  1490.58 1357.81 1660.48 1717.61 148296  1570.31
tailood 1973.03 2087.55 200813 206072 195506 21239 196994 2100.38 1952.15 2087.96 185759  1963.93
tail50a 3787.53 389916 364478 384018 340033 3612.79 347944 3680.35 3436.40 359540  3491.99  3566.89
tail50b 3313.03 348579 316688 332747 301399 323211 2934.86  3089.57 3060.02 309561 294983 3105.61
tail50c 311010 321927 281148 301614 271434 287593 267429 292877 2735.39 2840.69  2553.78  2702.03
tailsod 315921 3298.76 305887 320375 302543 33476 205464 3147.38 313870 323339 3099.89 3130.87
tai383 - - - - - - - - 3306206 3518899 31041.99 32157.63
71 35016 376.66 311.18 34869 279.52 31235 304.32 325.18 311.33 320.00 321.70 33526
1134 15433.81 1645847 15135.51  16083.56  15875.00 16645.89 15680.05 1652218 15557.82 1603053 1587891 16346.82

BBest total travel distance obtained over 5 runs, “*** Average total travel distance obtained over 5 runs, - The corresponding problem is not tested or there
is no known feasible solution

Table 4: Numerical results of our approach for B-VRPDR indicate the conflicting behaviour between the total

Parameters  TD* RT* TD RS . .

50 55,00 1901 50 70,36 5600.20 distance ar.ld the customers response time where the valge
75 984.92 6433.53 992.64 7262.28 of our objectives for the case (A, = 50%, A, = 50%) is
c100 992.37 10593.35 1010.51 12172.84 steadily increased compared to the TD* and RT* for
cl100 897.07 10107.57 935.28 11184.29 . .

¢120 1267.54 1942852 1305.40 22031.20 most instances, at the same time our results show
c150 1388.35 14923.44 1307.26 16418.11 that in general, there isn’t a big difference between the
cl199 1707.81 18083.74 1708.43 1989741 . .

taiT5 179946 1034757 1890 26 13279 50 distances and the customers response time found when
tai7s 1505.52 8732.53 1634.38 10530.12 we take mto account one objective and both objectives
tai7s 1492.13 8862.02 1738.71 11894.51 : -

tai7s 1447.88 1152894 1451.38 14367.02 which confirm the robustness of our approach for
tailoo 2221.60 16513.48 2403.76 20786.02 B-VRPDR.

tail0o 2246.07 1522256 2240.06 19263.98

tail00 1482.95 1174674 1716.98 13620.95

tailoo 1857.59 13570.27 2090.29 17134.74 CONCLUSION

tail5S0 3491.99 35117.63 3542.59 3982494

tail5S0 294983 28119.96 3020.58 3594949 . .
tai150 2553.78 26136.89 201178 20437.02 In this research, we have proposed a mathematic
tail50 3099.89 27685.10 3266.27 3319626 model and an improved evolutionary algorithm to solve
tai38s 31041.99 237281.59 33504.38 30497522 the bi-obi . hicl . bl 1 the d .
71 321.70 3017.37 308.03 4461.14 ¢ br-objective vehicle routing problem m the dynamic
134 15878.91 132737.05 15350.90 14624070 environment. The proposed algorithm 1s applied to 22

benchmarks instances with up to 385 customers and

weights of the total distance and the customers response compared to other worlks presented in the literature. The

time at 0.5 (A, = 4, = 50%). The TD* and RT* present the
value of our objective when we take into account only the
minimization of the total distance and the customers
response time, respectively. The TD and RT give to the
total distance and the customers response time
respectively for the best solution, generated by the
proposed approach of 5 mns for A4, = 50% and A, = 50%.
For the bi-objective optimization, the decision maker

computational results show that our approach is
competitive m terms of solution quality. As for future
work, it may be interesting to combine this approach with
other metaheuristics.
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