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Abstract: This study considers an iterative method which 13 a nonlinear conjugate gradient methoed for solving
unconstrained optimization problems. We propose a new conjugate gradient method satisfying sufficient

descent condition when strong Wolfe line search i1s used. We then compare the new method against other

known conjugate gradient methods. Numerical results show that the proposed method 1s efficient relative to

the number of iteration and computational time.

Key words: Conjugate gradient, strong-wolfe powell line search, sufficient descent, iteration, computational,

Malaysia

INTRODUCTION

Due to its simplicity and low memory requirement,
Conjugate Gradient (CG) method 1s recognized as one of
best methods in optimization The CG method 1s
designed to find the optimal solution to the following
unconstrained optimization problem:

minf(x) )]

xeR™

where, £ R">R 15 continuously differentiable. The general
idea of this method 13 to mimmize any function and
approach the optimal point by using the iterative
procedure. It starts by an imtial guess x;, followed by
mnproving the solution in following sequence x, and
lastly, ending the calculation by some stopping criteria.
The update iterates is given by:

X, =%, ta,d, ()
Where:
a, = The step size
d, = The search direction of function at the current
lterates point.

In the implementation of CG technique, the step size
is determined by certain line search. The line search
requires sufficient accuracy to ensure that the search
direction 1s always in a descent direction. There are two
types of line searches can be used either exact or inexact.

The best lne search 1s the exact cne. However, the
application of exact line search is difficult to find and may
fail in most cases of unconstrained optimization problems.
Thus, the inexact line search 1s often considered where
1t 18 based on the Strong Wolfe-Powell (SWP) line search.
In order to establish the convergence results of CG
method the SWP line search requires step size satisfying
the following condition:

f (Xk)-f(xk+akdk) >-%a,g.d, (3)
And:

‘g(xk +a,d,) d, <-ogld, (h

where, 0<d<o<]. Meanwhile, the d, is a search direction
defined by:

if k=0
if k=1

d, = {‘gk ()
—2: B d

Where:

g, = The gradient of f(x) at point x,

B. = A scalar known as the CG parameter

Different formulae for the parameter P, result in
different CG methods and their properties can be
significantly different. Some of them are called the FR
{(Fletcher and Reeves, 1964), PRP (Polyak,1969; Polak and
Ribiere,1969) HS (Hestenes and Steifel, 1952), VHS
(Shengwei et al., 2007) and RMIL, (Rivaie et al., 2011)
which are, respectively given by:
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The history of CG method was mtroduced by
Hestenes and Steifel (1952). He presented pY as the CG
parameter to solve a linear system of equation with a
symmetric positive definite matrix. Then, Fletcher and
Reeves (1964) extended the method of CG which 1s known
as [ to solve general unconstrained optimization
problems. From the founding of CG parameter until now
there is a growing interest in the development of CG
methods. Much research has been done in developing
new formulae of CG parameter with good numerical
performances and satisfying convergence analysis. The
recent CG parameters can be found in those study
(Abashar et al, 2016; Jusoh et al, 2013; Rivaie ef al.,
2012; Rivaie ef al., 2012; Gham et al., 2016, Hajar ef al.,
2016; Mohamed et al, 2016; Shapiee et al, 2014
Zull et al., 2015, Shoid et af., 2016) and (Khadyah et af.,
2016).

MATERIALS AND METHODS

The new conjugate method and its algorithm: Motivated
and inspired by the ongoing research in solving
unconstrained  optimization problems this study
proposes a new [y, denoted as B, where HMRF
represents Hamizah, Mustafa, Rivaie and Fatma. Tt derives
from a modification of HS method (Hestenes and Steifel,
1952) and VHS method (Shengwei et af., 2007). The ain of
this study is to improve the previous CG method with
good numerical performance m practical computation as
well as satisfying the convergence analysis. The new
formula for the numerator has been proposed by adding
a new scalar of m and the original formula for the
dencminator as HS and VHS formula have been retained.
Powell (1986) has made an analysis of CG parameter and

found that it should be restricted to a positive value to
avoid 1t cycles nfinitely without approaching a solution
point. Thus the condition by Zull et al. (2015) helps the
new parameter to always be in a positive value. The
formula of HMRF method 1s constructed as follows:

”gknz _m‘gggk—l‘ Hg Hz >m‘ng ‘

HMRF > —

k = d;1 (gk 7%1«1) g Kok

0 s otherwise
(11)
where: lee|  isascalar.

N L1
||gk ’gk—lﬂ

Next, we present the algorithm of CG method as follows:

»  Step l: setk = 0 and select an imitial point x,eR

s Step 2: compute B,

»  Step 3: compute the d, based on Eq. 5. If |g,|=0 then
stop

s Step 4: compute the ¢, based on Eq. 3 and 4

*  Step 5: update new point based on iterative Eq. 2

* Step 6 convergent test and stopping criteria if
f(x,, )<f(x,)and |g,,|<ec thenstop. Otherwise, go to
step 1 withk =k+1

Convergence analysis: In this study, the convergence
analysis for the HMRF method with the SWP line search
1s studied. Every CG method must satisfy the sufficient
descent condition to ensure that it is convergent. It is
required to guarantee that the search direction 13 always
1in a descent direction. The sufficient descent condition 1s
defined as follows:

g d, < —CHgk ||2 for and some constant C>0 (12

Before that, we need to simplify the HMRF method
Eq. 10 for it to be easily implied in further proving. By

applying condition ”ngz >m‘gzgk—1 , we have:
‘B:MRF‘ _ HngZ _m‘gggk’l‘ < ”gknz (13)
d (gk 7gk—1) dy (gk 7gk-1)

Otherwise, we use [B,™ Thus, we obtain:

2
0 < |gHMEF| < ﬁ (14)
‘Bk ‘ dZ—l (gk _gk—l)

Then, the following lemma is needed for the proof
that HMRF method possesses the sufficient descent
condition under the strong wolfe line search.
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Theorem 1: If sequences {g,} and (d,) are generated by
CG algorithm and the stepsize o, is computed by SWP line
search with 0<1/4 then the sufficient descent condition
Eq. 11 holds for some ce(0, 1).

Proof: The proof is by induction. From Eq. 5 with 3,"%
multiplying both sides by g7, vields:

gldk = _”gk ”2 + BEMRFgEdk—n (15)

For mitial direction k = O and d, = -g, 1t 1s clear that
gldy <—|es|* <0. Hence, holds for k = 0. Then, we need to
show that also holds for kz1. Therefore, we divide the
proof into two following cases. Case (1): If gjd,_, <0 then
from Eq. 14, we obtain:

gpd, = _”gk ”2 +B " ged, <0 (16)
Case (ii): If. gyd, ;20 then divide Eq. 14 by g, |, we
obtain:
ggdk _ HMRF ggqu (17)
2 k 2
e ] e |
From Eq. 13, we have:
ggdlz <1+ - Hngz gzdkgl (18)
e de(grges) ol
ggdk < ggdk—l (19)
||gk||2 dZ—l (gk _gk—l)
Note that the strong Wolfe condition gives:
dE_l(gk 7gk—1)27(671)gz—1dk—1 (20)
Combine FEq. 18 and 19 with 0<1/4 we have:
g:dy < 1- gy, 21)
”ngZ (Gil)gg—ldk—l
gk o .9 g (22)
e (1+0)
Letc =1-0/(1+0) we get:
ggdk 2 70Hgk H2 (23)

This shows that the result holds for k=1. Therefore,
the sufficient descent condition holds. The proof is
completed.

RESULTS AND DISCUSSION

In this study, we present the numerical result of this
study. It will be compared based on iteration numbers and
CPU times. The best convergence result yields from the
less iteration number and less time needed to obtain the
solution pomnt. The 236 tests problems which we use are
specified full m Table 1. They are mcluding a set of
16 nonlinear unconstrained problems with different initial
points and dimensions range from small scale to large
scale. These test problems are taken from the list of test
functions by Andrei (2008). In addition, we used four
initial points with different ranges as suggested by
Hillstrom (1977). The best selected initial point should be

Table 1: A list of test funcitions

Test finction Dimension/s Tnitial points
Three hurmp 2 (3,3), (10, 100, (20,
20, (44, 44)
8ix hump 2 (1, 1),(5,5),(10, 10),
(15,15)
Booth 2 (1,1), (5,5), (10,10),
(20, 20)
Treccani 2 (1, 1), (4,4, (8, 8),
(15,15)
Zettl 2 (1, D, (0, 10, (15,
15), (25, 25)
DIXMAANA 3, 900, 3000, 2, 2,....2), (10,
6000, 9000 10,..., 10),
(15, 15,..., 15), (o,
30,...,30)
DIXMAANB 3, 900,3000, (-5,-5,...,-5), (-2,-
6000,9000 2,...,-2),
(2,2,...,2),(5,5,....5
Hager 2,4, 10,100 (2,2,...,2), (5,5,....5),
(10,10,..., 10),
(20,20,...,20)
Generalized quartic 2, 500, 1000, (2,2,...0), aol1o,...,
5000, 10000 10), (20,20,...,20),
(30,30,...,30)
Shallow 2, 500, 1000, 2, 2,...,2), (55,...9
5000, 10000 (25,25,...,25),
(50,50,...,50)
Extended block 2, 500, 1000, (2, 2,...,2),
5000, 10000 (10,10,...,10),
(15,15,...,15), diagonal
(30,30,...,30)
Extended cliff 2, 500, 1000, (2, 2,...,2),
5000, 10000 (20,20,...,20),
(50,50,...,50),
(80,80,...,80)
Extended 2, 500, 1000, (1, 1.1, (55,...5
DENSCHNB 5000, 10000 (10,10,...,10),
(15,15,...,15)
Extended 2, 500, 1000, (2,2,...,2), Freudenstein
and 5000, 10000 (5.5,....9),
Roth (30,30,...,30),
(84,84,....89)
Extended rosenbrock 2, 500, 1000, 2, 2..2), (55..5
5000, 10000 ,(25,25,...,25),
(50,50,...,50)
Extended white and 2, 500, 1000, (2,2,...2,(55,....5 holst
5000, 10000 (25,25,...,25),
(50,50,...,50)
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based on the random number generator (Rivaie et al.,
2015). The stopping criterion 1s set to f(x,.)<f (x,) and
lgel <10°. All tests are implemented using Matlab R2011b
on a PC with Intel (R), Core(TM), 17-4712MQ 2.30 GHz and
8GB RAM memory.

In this study, we apply the performance profile by
Dolan and More (2002) to compare the numerical
performance of CG methods. The performance profile
provides the means to evaluate and compare the
performance of the set solvers S on a test problem P.
Assume that n, solvers and n, problems exist for each
problem p and selver s. Let t, . denote the performance
measure (e.g., number of iterations and CPU time) required
by solvers s to solve problem p. Then, the performance
ratio is given by:

b (24)

L, =— " ——
© o minft, i8E 5}

Assume that a parameter r;>r,, 1s chosen for all p, s
andr,, = r, if and enly if solver s does not sclve preblem
p- Define that for all te 3:

ps(t) = anize{pe Pir < t} (25)

?

where, p,(t) 15 the probability for a solver s€S that a
performance ratio r,, was within a factor of the best
possible ratio. The function p, 18 the cumulative
distribution function of the performance ratio. The
performance profile for a solver 1s non-decreasing,
piecewise and continuous from the right. The value p, (1)
15 the probability that the solver will win over the rest of
solvers. Dolan and More (2002) for more details about
performance profile.

Figure 1 and 2 show the performance profile of all of
the tested methods-HMRF, VHS, RMIL, HS, PRP and FR
method, relative to the number of iterations and CPU
times, respectively. From the graph of performance profile,
the right side gives the percentage of the test problems
that are successfully solved by each of the methods.
Meanwhile, the left side gives the percentage of the test
problems with the fastest method. Based on the curve at
the left side of both Fig. 1 and 2 the HMRF method shows
the fastest method as its curve 1s above the other entire
curves. Furthermore, the HMRF method can solve almost
99% test problems which 1s the highest as compared to
the other methods. Meanwhile, the other methods which
are VHS, FR, HS, RMIL and PRP, only solve 95, 88, 75, 69
and 64% of the test problems, respectively. In conclusion,
the new method requires less iteration and less time
needed to obtain the solution point based on numerical
results of iteration numbers and CPU times. Therefore,

Py(t)

Fig. 1:
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Fig. 2: Performance profile with respect to CPU times in
seconds

we consider our new method; HMRF method 18 a
comparable and efficient method in solving unconstrained
optimization problems.

CONCLUSION
This  study provides the new conjugate
gradient method for wunconstrained optimization

problems. We have theoretically shown that the
HMRF method guarantee sufficient descent condition
which is g% d, <-C|g|’ under the strong-Wolfe Powell
line search. The computational results show that HMRF
method is effective and performs better than the FR, PRP,
HS, RMIL and VHS method.
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