Tournal of Engineering and Applied Sciences 12 (5): 1250-1253, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Containerized Microservice Architecture Performance Increasing by
Using a Cache Subsystem and Multithreaded Application Server

Vladimir N. Solovyev, Andrey V. Prokofyev and Roman G. Chesov
Flexbby Solution’s LI.C Dolgoprudny, Moscow Region, Russia

Abstract: This study describes the perfomances of containerized multi-tier client-server architecture. The
multi-tier architecture has a multithreaded application server and cache subsystem. Different types of the cache
replacment politices were used such as LFU, LRU, PSEUDO LRU Cache, MRU, SLRU, 2-Way Cache.

Key words: SOA, containerization, LXC, application server, cache subsystem

INTRODUCTION

Currently, analytics and enterprise management
systems experience a shift from virtualization
(Rastogi and Sushul, 2015; Morabito et al, 2015) to
managed contamerized microservice architecture for
application hosting (Dua et al., 2014). The primary driver
for the use of containers was an active development of
technologies such as Docker (Anonymous, 2017) and
LXC (Linux Containers, 2014) started in 2014. The main
advantage of containerization is the promise to reduce
applications deployment time by 54%, labor costs by
40% and decrease total cost of ownership by 30%
(Rastogi and Sushil, 2015).

However, the containerization 1s just a way to host
and manage application lifecycle. On the other hand,
an important parameter of analytics and enterprise
management systems 15 lgh performance. It means that
system response time should not degrade with growing
volume of data and increasing number of user requests. It
15 possible to meet such a requirement of amalytics
and business applications with the use of multi-tier
architecture based on the multithreaded application server
(Tang et al., 2010; Jinjin and Zhaolin, 2013) and cache
subsystem with various cache replacement policies
(Chikhale and Shrawankar, 2014; Yin, 2011).

This study studies the performance of contamerized
multi-tier microservice architecture with the multithreaded
application server and cache subsystem.

MATERIALS AND METHODS

Multi-tier client-server architecture with
multithreaded application server, ORM and cache
subsystem: The studied multi-tier client-server
architecture 1s represented by multi-tier client-server
application (Fig. 1). The main components of the

External
systems
5 OpenWire
External Active MQ
systems server

FASTCGI/ http OpenWire
JSON Post/Get

AJAX
eb client

Wi
5 http/json

Web server

- Web
| Web API | | Integration API | DAV Storage
| Communication plugins layers r—b server
Application Cache (:)DBC Data base
server subsystem > server

Fig. 1: Developed multi-tier client-server architecture

architecture are; ATAX WebClent, WebServer, WebAPI,
commurcation pluginslayer, application server, cache
subsystem, storage server, database server.

AJAX WebClient: Ts a full-featured Tava Script
application compatible with all common browsers:
Chrome, Firefox, Safari, Internet Explorer including mobile
versions. WebClient interacts with WebAPI running on
a WebServer sending JSON requests over HTTP/HTTPS
emulating two-way connection. Tt means that both
WebClient and WebAPT can initiate requests (integration
bus component-communication plugins layers). Emulation
15 performed by GET long pelling request. WebAPL
responds either by timeout or when data needs to be
transferred to the client appears. Data from WebClient to
WebAPT is sent using short POST requests.

WebServer Nginx: Ts used as a web server (runs on ports
80 and 443). WebServer works with the WebAPT adapter
to transmit user requests to the application server through
the communication plugin layer. In addition, application
WebServer provides web access for ATAX WebClient,
user authentication and dispatches inbound request
form ATAX WebClients.

Corresponding Author: Vladimir N. Solovyev, Flexbby Solution’s LL.C Dolgoprudny, Moscow Region, Russia
1250

J. Eng. Applied Sci., 12 (5): 1250-1253, 2017

Communication plugins layer and WebAPT: Provides the
queue of external requests from the ATAX WebClient,
external systems through a variety of protocols
(HTTP POST/GET, STOMP/OpenWire), dispatching of
requests between application servers and system
scaling, DTO (Data Transfer Object) transformation of
mbound/outbound requests. WebAPI provides
interaction between web and application servers and
queue management for requests.

Application server: Provides processing of DTO requests
according to the business logic, API, supports cache
subsystem, serializes the classes of business logic to the
structure of database tables, communicates with the
database through ODBC driver. It mcludes API for C++
and Python.

Cache subsystem: Provides data cache in the server’s
memory and replacement according to the chosen cache
replacement policy. The following caching policies were
developed for cache subsystem: LFU Cache; LRU Cache;
PSEUDO LRU Cache; MRU Cache; SLRU (MRUHLRU), 2
way Cache (associative cache); ATC-intellectual selection
of caching algorithm. The set of cache replacement
policies may be easily extended with additional policies
developed i C++ or Python.

Storage server: It 1s a server dedicated for processing
application server requests related to file access
(providing access, downloading, uploading, removing,
getting file size). It nteracts with the application server via
WebDAYV protocol.

Database server: PostgreSQL, MSSQL or other relational
databases are used as a database. All the communications
with the database server are performed only via
application server using ODBC interface. The database
stores data in tables.

The containerization of multi-tier client-server
architecture: The LXC technology has been used as
1solation at the operating system kemnel level. The
1solation layer is a set of libraries running on the top of
the Linux kernel, enabling implementation of the logic of
the application containers management (separated SOA
nodes) and creation a computational cluster. One of the
containers includes all the libraries required for the cluster
management. Cluster management is performed using the
administrator’s interface. Hierarchy of isolated container
management 1s shown in Fig. 2. Initsys library was
developed to manage solated contamers. It provides

Lnitsys
Launch
Stop
Suspend
App
RDBMS
WebAPI

Linux Kernel NS

i

LXC

File

ssn_manager
storage

A

Web

Subscription
server

control center

-

Host OS Container layer

Fig. 2: Hierarchy of isolated container management

SVN
- %U APP 1 APP 2
soL | o Ug (hosted) (hosted)
repository |~ | %
| Container || Container |

| Virtual switch internal IP |

ssn-manager Web server
nginx

https

https

Users

Fig. 3: Network hierarchy of container management

access to containers kernel for the managing application
container. The ssn_manager component was developed
for the host machine level. Using a high-level API, it
provides to the external management server access to the
Linux kernel function, the virtualization layer (LXC), the
virtual contamner and 1its services via the imtsys
component. In addition, ssn manager manager has
interfaces to file storage servers and web servers for
management from the admimstrator console. All the
components of the cloud infrastructure interact via IP
protocol. That allows placing the cloud components to
physically and geographically distributed infrastructure

(Fig. 3).
RESULTS AND DISCUSSION

The performance measurements of containerized
architecture: The performance of the contamerized
architecture and the system response time were
tested using the following hardware and software:
Server Intel-E5-2650 (2.0 Ghz)<2 (16 Cores), 4x16Gb,
HDD =300 Gb.

1251

J. Eng. Applied Sci., 12 (5): 1250-1253, 2017

O8-Ubuntu Server-Ubuntu 14.043 LTS. To
provide experimental conditions, the module generating
user requests (POST) with required frequency was started
mn one of the contammers. The program for measuring the
time of response to incoming user requests was mstalled
i the tested application container. To meaintain the
experimental mtegrnity, one 2.0 GHz processor core and
16 GB RAM were allocated for the tested application
container.

Software:

Measuring performance of containerized architecture:
Measured response time T consisted of two components,
the response of the presentation tier (Nginx web
server+WebAPT) and application server response time T,.
Application server processed the business logic of user
requests:

T = T+T,

Presentation tier response time reflects maximal
throughput. Presentation tier response time is calculated
as time between sending POST request and receiving
response that POST request is received and is queued for
processing, POST Delay (PD). PD = T-T,, where T-the
time when the request was sent. The measured layers are
shown in Fig. 4d.

The POST Delay parameter was measured as follows:
Using request generator, the series of 1000, 2000, 5000
POST requests were sent at the maximum frequency. For
each request, the time when it was put in the processing
queue of the application server was measured. The
experiment proved that the current configuration of the
presentation tier provides throughput at least 900
requests per second at single CPU core. The important
thing was that the presentation tier provides sufficient
performance for testing the application server response
time.

The next parameter to be measured was the overall
system response time which consisted of presentation
tier response time and application server response time.
T = T,-T, (where T-the time of sending the request to the
web server, T;-the time of receiving the response). The
measurements of the system response time were
conducted in the following settings: 1, 2, 4 threads and 10
threads. The system response time was measured at the
frequency varying from 50 requests per second to 400
requests per second. The experimental research of
performance of the containerized microservice architecture
has shown that the system response time for a single
thread reaches up to 160-170 requests per second. For two
and more threads the system performance does not
degrade with up to 400 requests per seconds.

Flexbby app server->workers

Queue

‘WebAPI plugin

POST

GET replay

Nginx

GET

Client requests
POST replay >

Fig. 4: Scheme of layers and requests

The test of cache subsystem: The caching subsystem 1s
a set of replacement policies for LFU, LRU, PSEUDO LR
Cache, MRU, SLRU, 2-Way Cache and mtelligent
replacement policy selection algorithm enabling the use of
different types of replacement policies depending on the
requests. The conditions for measuring the response time
of the application container with the caching subsystem
were the same as for measuring the performance of a
single application container. The main difference was that
the application container stored randomly requested data
1n the database.

To measure system response time using caching
algorithms and it ratio, the followmng experimental
conditions were used:

» Maximum data cache size: 200-5000 busmess objects

» Number of user sessions: 1000

¢ Number of unique objects requested: 3000 per single
measuremernt

¢+ Total number of requests:
measuremernt

+ Normal distribution of requests, sigma 500 objects

» Studied parameters

s Hit ratio (the probability of locating the requested
item 1n the cache memory)

* System response time

¢+ Total number of displacements of system data
objects from the cache

20000 per single

The test results are shown in Table 1. The average
system response time for the same dataset and user
requests without caching algorithms 1s 0.45°s. The mimmal
size of the data cache decreases system response time by
almost 10 times. With the larger cache sizes, caching

1252

J. Eng. Applied Sci., 12 (5): 1250-1253, 2017

Table 1: System response time for different replacement policies
Algorithm, response time (sec)

Cache size LFU LRU MRU PLRU SLRU 2-way cache AIC

200 0.052 0.050 0.052 0051 0.052 0055 0.050
400 0.049 0.049 0.050 0.049 0.050 0.050 0.049
600 0.046 0.046 0048 0.047 0.048 0.048 0.040
1000 0.041 0.041 0.043 0042 0.043 0.0d44 0.041
2000 0.029 0.029 0033 0032 0.034 0036 0.029
3000 0.021 0.021 0.024 0024 0024 0.031 0.021
4000 0.015 0015 0.016 0018 0.016 0028 0.015
5000 0.014 0.014 0.014 0014 0.014 0.026 0.014

algorithms reduce system response time by >30 times. As
for the size of the data cache which does not contain
almost all objects, the algorithms LFU and LR showed
the best result, reducing the system response time by
20-25%. The system response time for the algorithm LFU
and LR 1s practically indistinguishable.

CONCLUSION

This study studies the performance of contamerized
multi-tier microservice architecture with the multithreaded
application server and cache subsystem. As an isolation
layer, LXC technology was used. Application container
was tested at a single 2 GHz processor core. The
experimental research of performance of the containerized
microservice architecture has shown that the system
respense time for a single thread reaches up to 160-170
requests per second. For two and more threads the
system performance does not degrade up to 400 requests
per seconds.

The cache subsystem test has shown that cache
replacement policies such as LFU, LRU, MRU, PLRU,
SLRU reduce the application container response time by
>30 times. The most promising algorithms for analytical
and busimess systems are LFU and LRU, the 2-Way
Cache algorithm showed the worst result among the
studied replacement policies.

ACKNOWLEDGEMENT
This research was performed with the support of
the Ministry of Education and Science of the Russian
Federation (Reference No. RFMEFI57914X0069).
REFERENCES

Anonymous, 2017. Docker documentation. Docker Inc.,
San Francisco, USA. https://docs.docker.com/.

Chikhale, K. and U. Shrawanlkar, 2014. Hybrid multi-level
cache management policy. Proceedings of the 2014
Fourth Intemational Conference on Communication

(CSNT),

India,

Systems and Network Technologies
April 7-9, 2014, TEEE, Bhopal,
ISBN:978-1-4799-3070-8, pp: 1119-1123.

Dua, R., AR Raja and D. Kakadia, 2014. Virtualization vs
containerization to support paas. Proceedings of the
2014 TEEE International Conference on Cloud
Engmeermg (IC2E), March 11-14, 201 4, IEEE, Boston,
Massachusetts, USA., ISBN:978-1-4799-3768-4, pp:
610-614.

Jimin, H. and F. Zhaolin, 2013. The design ERP in the
multi-tier architecture. Proceedings of the 2013 Fourth
International Conference on Digital Manufacturing
and Automation (ICDMA), June 29-30, 2013, TEEE,

Qingdac, China, TSBN:978-1-4799-0325-2, pp:
1441-1444.
Linux Containers, 2014 LinuxContainers.org

Infrastructure for container projects. Linux Containers
Organization, USA. https: /linuxcontainers.org/.
Morabito, R., 1. Kjallman and M. Komu, 2015. Hypervisors
vs. lightweight virtualizaton: A performance
comparison. Proceedings of the 2015 IEEE
International Conference on Cloud Engineering
(IC2E), March 9-13, 2015, TEEE, Tempe, Arizona,

USA., ISBN:978-1-4799-8219-6, pp: 386-393.

Rastogi, G. and R. Sushil, 2015. Cloud computing
implementation: Key
Proceeings of the 2015 2nd International Conference
on Computing for Sustainable Global Development
(INDIACom), March 11-13, 2015, IEEE, Dehradun,
India, ISBN:978-9-3805-4415-1, pp: 320-324,

Tang, P., W. Fang, HP. 5i and Y.3. Cao, 2010. An
enterprise flexible object-relational mapping
framework based on metadata and
property-seperation storage. Proceedings of the 2010
International Conference on Educational and Network
Technology (ICENT), Tune 25-27, 2010, TEEE,
Qinhuangdao, China, ISBN:978-1-4244-7660-2, pp:
263-266.

Yin, L., 2011. Design and implementation of multilayer
cache strategy of web system based on seam.

issues and solutions.

Proceedings of the 4th International Conference on
Machine Vision (ICMV 11), December 9, 2011,
International Society for Optics and Photomnics,
Singapore, pp: 83500L-83500L.

1253

	1250-1253_Page_1
	1250-1253_Page_2
	1250-1253_Page_3
	1250-1253_Page_4

