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Abstract: The significant increase in computer network usage and the huge amount of sensitive data being
stored and transferred through them has escalated the attacks and invasions on these networks. Secure data
communication over the internet and any other network 1s always under threat of intrusions and misuses. The
system that monitors the events occurring in a computer system or a network and analyzes the events for signs
of mtrusion 1s known as an Intrusion Detection System (IDS). In mformation protection, the Intrusion Detection
System (IDS) has become a crucial component in terms of computer and network security which monitors the
network traffic to detect possible security threats. There are various approaches being utilized in intrusion
detections but unfortunately any of the systems so far are not completely flawless and suffer from a number
of drawbacks such as low accuracy to detect new types of intrusions and misclassification of normal and
malicious traffic, in addition to long response time. 1t 1s necessary to develop an IDS that 1s accurate, adaptive
and extensible to overcome these weaknesses. In this study, we proposed a learning-based method which
improves IDS adaptability to new aftacks and reduces false alarms. The method that has a distributed
arclitecture to increase performance and scalability of the IDS and uses C4.5 decision trees with the feedback
learning techmique to adapt dynamic network behaviors. To evaluate the proposed method we used
some well-known datasets in this context such as KDD Cup 99 and did several tests with approximately 97%
detection accuracy on benchmarks. According to the promising results, the adaptable TDS approach is more

accurate than traditional systems and it 1s more efficient agamnst new complex network attacks.
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INTRODUCTION

Over recent year, the internet has tumed mnto a part
of our daily life and evolved mto a ubiquitous
infrastructure.
mternet and any other network 1s always under threat of

Secure data communication over the

mtrusions and misuses. Various security methods, like
access control, encryption or firewalls have been
provided to improve the security of networks. The
contemporary network 1s used with a firewall which
terminates any arriving traffic from breaking the security
policy laid by the network administrator. However,
these techniques have failed to fully protect against
mcreasingly sophisticated mtrusions as the firewall 1s
not successful to discover the interior users who are
bypassing such rules. As a result, Intrusion Detection
Systems (IDSs) have become a crucial component of any
network security infrastructure, detecting network attacks
before they mduce extensive damage which 1s not only

sniffing the arriving traffic but also sniffing interior traffic.
In order to find out what 1s Intrusion Detection (ID), we
should declare the defimtion of intrusion. An intrusion
can be defined as (Somi ef al., 2015): “any set of actions
that attempt to compromise the integrity, confidentiality
or availability of a resource™. IDSs are systems that raise
an alert by smffing or watching the armiving packet traffic.
IDS fundamentally serve as a last defender of the network
against threat after firewall.

The objective of an IDS 1s to create a defense shield
against malicious usages of computer systems by
detecting a misuse or a breach of a security policy and
notifying administrators to an ongoing intrusion. An IDS
detects mtrusions by watching a system or network and
examimng an audit stream collected from the system or
network to search for signs of malicious behavior. Tf they
are malicious to the system then TDS will detect it
automatically. An IDS 1s considered to 1dentify all kinds
of malicious network traffic and computer usage that
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traditional firewall could not detect them. Intrusion
detection is dependent on the speculation that the
activities of the mtruder differ from lawful user behaviors
i ways that could be qualified. Researchers always want
to find an intrusion detection technology with better
detection accuracy and less training time. Most Intrusion
Detection Systems (IDS) can fall in to 2 categories:
anomaly-based intrusion detection and misuse-based
intrusion detection. Also depending on where these TDSs
are located, we have 2 classes of host-based and
network-based mtrusion detection systems. The system
that identifies patterns of traffic or application data
presumed to be malicious known as misuse detection
systems and methods that compare activities against a
normal baseline called anomaly detection systems. The
system 1s Network-based Intrusion Detection System
(NIDS) if it monitors the flow of network packets and
host-based TDS HIDS if it monitors system calls or logs.
Network Intrusion Detection System (NIDS) resides on
network and observes the malicious traffic passing
through the network whereas Host Intrusion Detection
System (HIDS) resides on the system and observes
mbound and outbound traffic going or coming from/to the
system; the example of the HIDS will be firewall
(Desale et ol, 2015). Existing HIDS approaches
examine audit data provided by either an operating
system or by a particular application such a web server
(Rahmatian et ai., 2012).

In this research, we have provided a method that
provides considerable accuracy and efficiency with help
of modular structure and intelligent agents that have
employed C4.5 decision tree (Wang ef al., 2009) structure
in their detection layer and also with feedback system it
could propose framework that 1s able to modify itself with
changes in network data and with the help of distributed
processing in detection modules it 1s able to detect attack
much faster.

Literature review: In their method (Wang ef al., 2009)
they proposed an intrusion detection algorithm based on
the C4.5 decision tree; C4.5 decision tree classification
method is used to build a decision tree for intrusion
detection then convert the decision tree mto rules and
save them into the knowledge base of intrusion detection
system. These rules are used to judge whether the new
network behavior is normal or abnormal. They used KDD
Cup 99 dataset n their job and their experiments show
that the detection accuracy rate of mtrusion detection
algorithm based on C4.5 decision tree is over 90% and the
process of constructing rules is easy to understand. In
this study (Kumar and Yadav, 2014) an artificial neural
network based intrusion detection system 1s proposed

which used gradient descent with momentum
backpropagation algorithm for learning. Although,
random patterns are selected for training but the proposed
neural network 1s tested across complete testing data of
KDD Cup 99 dataset. Their output is evaluated in terms of
accuracy detection rate and false positive ratio. Based
on their experiments result the accuracy of their
method is 93%.

In their job (Gong et al., 2010), they discover that the
research of neural network based data fusion IDS tries to
combine the strong processability of neural network with
the advantages of data fusion IDS such as low distorting
and good information quality. They discover that the
pruning of neural network can also provide better
performance. Their proposed model could be used in
large-scale and distributed system for mtrusion detection.
They used KDD dataset in their job and the experimental
result shows that they have received 83.4 overall
detection.

The purpose of this study (Lin ef al., 2015) 18 to
develop a new intrusion detection system that combines
the idea of feature generation and visualization
technology. They use a four-star graph to give an
intuitive simulation of high dimension data classification
for IDS. Finally, generation of new visualized numerical
features decrease the dimensionality of the data 4-16 or 4
and increase the computation speed of the new IDS.
Visualization is an intuitive way for feature selection
and feature reduction. They used KDD data set over
their job and the FASVFG-based classifier achieves a
generalization accuracy of 94.3555% in validation
experiment.

They (Shanmugavadivu and Nagarajan, 2011) have
developed an anomaly based mtrusion detection system
in detecting the mtrusion behavior within a network. A
fuzzy decision-making module was designed to build the
system more accurate for attack detection, using the fuzzy
inference approach. An effective set of fuzzy rules for
inference approach were identified automatically by
making use of the fuzzy rule learning strategy which is
more efficient for detecting intrusion in a computer
network. At first, the definite rules were generated by
mining the single length frequent items from attack data as
well as normal data. Then, fuzzy rules were identified by
fuzzifying the definite rules and these rules were given to
fuzzy system which classify the test data. They have used
KDD Cup 99 dataset for evaluating the performance of the
proposed system and experimentation results showed that
the proposed methed is effective in detecting various
intrusions in computer networks. As they discussed by
analyzing the result, the overall performance of the
proposed system is improved and it achieves
=90% accuracy.
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In this study (Sahu and Jena, 2016) an MSVM
classifier 1s used to detect and identify the attacks by
type. Cross-validation and re-sampling methods are
applied to improve the learming process to the datasets.
The model can determine a particular known type of attack
when the unknown instances need to be classified. Their
accuracy over corrected KDD dataset was 91.445%.

Their (Koc et al., 2012) model is a multinomial
classifier that 13 used to classify network events as
normal or attack events. The model is based on a
new data mimng method called Hidden Naive Bayes
(HNB). Their framework includes a feature selection
model based on the three filter methods: Correlation
based (CFS), Consistency-based (CONS) and interact
feature selection methods. These approaches are leading
filter-based. Based on their experimental result, they have
used KDD dataset over their job and they received
0.9372 accuracy.

This (Gumus et al., 2014) study focuses on dynamic
anomaly-based TDS and they have used online Naive
Bayes classifier in their job. The classifier starts with a
small number of training examples of normal and bad
classes; then as 1t classifies the rest of the samples one at
a time, it continuously updates the mean and the standard
deviations of the features (IDS variables). They have
used KDD dataset over their job and based on their
experimental results they have received 0.93 accuracy
for online Naive Bayes and 0.96 for online K-NN.

MATERIALS AND METHODS

Proposed framework: In this part, we will go through the
techniques that we have already employed in our
framework to overcome those issues and we explain each
of them individually m details. Our framework has a
modular constructor and each part of it has specific duties
and tasks. Tn the following, each of the components of the
proposed method 15 discussed in detail; Fig. 1 has shown
an overview of our proposed model architecture. As it
has demonstrated in Fig. 2 there are 2 phases in our
method that are training phase and testing phase. The
profiles are built in the training phase and used to detect
mtrusions in the testing phase. In the first step, the
algorithm starts traiming period. In this peried, the
decision trees on each of detection modules should be
trained with traimng instances. In here each of detection
modules 1s a decision tree that its structure 1s different
than another one due to it has prepared by different
proportion of training data. After the training phase, the
decisions of these detection agents (decision trees) about
incoming packet will be used in the election among

detection modules in the testing phase. In the testing
phase we will examine and test our method with different
data than we have used in training period.

Capturing network traffic: Generally, for detecting the
probable intrusion, the TDS systems are placed in the path
of the stream network traffic and by analyzing the
captured network packets the probability of mtrusion will
be reviewed. In the proposed method also algorithm
inputs contain packets of network traffic and every time
a copy of captured packet will be given to the algorithm
for analyzing. Each packet contains 2 main parts that are
header and data. The header contains the informatien for
transportation and packet control and data includes
transferring information. As regards a packet contains a
negligible piece of transferring data on the network and
also 1t could be encrypted and analyze it individually
could not facilitate detecting intrusion, the initial
concentration of provided method is in the header of the
packet which contains several features. The value of each
element based on the type of it could be an integer,
decimal and also a string. These features will be analyzed
by devices and system on the network and based on them
the packet will be routed and controlled. For example,
“protocol-type” feature specifies the protocol type that
the packet should be transferred based on 1t and 1t could
be TCP, UDP or ICMP. Studying and analyzing the
features of each packet would give us wvaluable
information about the probability of intrusion. For
example, “service” feature that specifies service type of
the packet is one of the effectual factors in specifying
attacks. For mnstance, the attacks that consider destroying
web servers will target HTTP service and the mail service
attacks are seeking to target SMTP. Of course, this feature
is just one of the features to detect attacks and
combination of them with the rest of the features could
resulting in a model that can distinguish attack packet
from normal packet. In Table 1, each of the features with
explanation has shown in details.

Distribution module: In the proposed method, the first
part is capturing network traffic for distribution module
that receives a copy of passing packet on the network.
This module controls the distribution of packet among
detection modules. Since, the quantity of detection
module is selected based on hardware and processor
resources, so it could be different quantity and generally,
there are N detection modules in the system that
distribution module sends a copy of current packet on the
network to each of them. In order to increase the speed of
the system, part of the pre-processing of the packets such
as extracting features will be done by distributed module
and result of it will be sent to next component. With this
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Table 1: KDD dataget features with description and sample value

Feature name (category) Description Type Sample values
Basic features
Duration # of seconds of the connection Integer 0<x<58329
Protocol_type Type of the protocol String Tcp, udp, icmp
Service Network service on the destination String Hitp, smtp, domain_u, auth,Finger,telnet, etc
Flag Normmal or error status of the connection String SF, 82, 81, 83, OTH, REJ,RSTO, SO,RSTR,
RSTOSO, 8SH

Src_bytes # of data bytes from source to destination Tnteger 0<x<1379963888
Dst_bytes # of data bytes from destination to source Integer 0<x<1309937401
Land 1: connection is from or to the same host Integer Oorl

or port; 0: otherwise
Wrong_fragment # of “wrong” fragments Integer Qorlor2
Urgent # of urgent packets Integer 0<x<14
Content features
Hot # of “hot” indicators Integer 0<x<77
numn_failed logins # of failed login attempts Integer 0<x<5
Logged-in 1: successfully logged in; 0: otherwise Integer Oorl
Num_compromised # of “compromised” conditions Integer 0<x<7479
Root_shell 1: root shell is obtained; 0: otherwise Integer Oorl
Su_ atternpted 1: “su root” command attempted; 0: otherwise Tnteger Oorlor2
Num_root # of “root” accesses Integer 0<x<7468
Num_file crations # of file creation operations Integer 0<x< 43
Num_shells # of shell prompts Tnteger Oorlor2
Num_access_{files # of operations on access control files Integer 0<x<9
Num_outbound_cmds # of outbound commands in an fip session Integer Oorl
Ts host login 1: the login belongs to the “hot™ list; 0: otherwise Tnteger Oorl
Is_guest_login 1: the login is a “guest” login; 0: otherwise Integer Oorl
Traffic leatures
Count # of connections to the same host Tnteger O<x<511
Srv_count # of connections to the same service Integer 0<x<511
Serror_rate % of cormections with SYN errors to the same host Float 0<x<1
Srv_serror rate % of cormections with SYN errors to the same service Float. Ol
Rerr or_rate % of cormections with RET errors to the same host Float 0<x<1
Srv_rerr or_rate % of cormections with RET errors to the same service Float 0<x<1
Same siv rate % of cormections to the same service Float. Ol
Diff_srv_rate % of cormections to different services Float 0<x<1
Srv_diff_host_rate % of cormections to different hosts Float 0<x<1
Dst_host count # of connections to the same host Tnteger 0<x<255
Dst_host_srv_count # of connections to the same service and Integer 0<x<255

to the same destination host
Dst_host same srv rate % of cormections to the same service and Float. Ol

to the same destination host
Dst_host_diff srv_rate % of cormections to different services and Float 0<x<1

to the same destination host
Dst_host same src port_rate %6 of connections from the same source port. Float. O<x 1

and to the same destination host
Dst_host srv diff hostrate %6 of connections to different hosts and Float. O<x 1

to the same destination host
Dst_host_serror_rate % of cormections with SYN errors to the same host Float O<x< 1
Dst_host srv_serror rate % of cormections with SYN errors to the same Float. O<x 1

service and to the same destination host
Dst _host_rerror_rate % of cormections with RET errors to the same host Float O<x< 1
Dst_host srv rerror rate %% of cormections with RET errors to the same service Float. O<x 1

and to the same destination host
Class
Label “Nomnal” or a specific attack type String Normal, smurf, imap, nmap, etc.

situation, there is no need to pre-process and extract data
mside of the packet m each detection module. The
detection modules will be run on different threads in order
to mcrease the speed of the system. So incoming data will
be sent to various detection modules that each of these
detection modules is an individual unit to decide about it.

Detection modules: These modules analyze the packets
that have already received on network traffic based on

their own individual structure in distributed way and hand
over the result of it to aggregation module. Each of the
modules in their own structure has a C4.5 decision tree
that has tramned with a different bunch of labeled packets
in the training phase of the method. The result of the
analyzing each module 13 directly related to the structure
of its own tree and structure of each tree could be
different based on the data which has already used to
train them. The main idea of this part of proposed model
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Fig. 3: Structure of tree based on given data

is similar to evelutionary algorithms; it means that in the
proposed method the detection modules will decide about
one instance based on their own structures and detect it
as an abnormal or normal packet. These decisions will be
aggregated in next component and in the next detection
turn, 1t will increase the efficacy of the detection module
that offered better performance and has a correct
recognition and decreases the effectiveness of those that
have incorrect recognition or even replace weak detection
module with those that are more efficient. This module
after few turns helps the system to keep the detection
modules which are more suitable for the current situation
of network and play more effective in detecting attacks
and also they decrease wrong detections of the algorithm.
As long as each of modules has trained with a different
part of data so they have different tree structure than each
other and also at the end they work together as a unit
because of elecion among all of the modules. As
discussed before, the structure of each detection modules
1s based on the C4.5 decision tree (Wang et af., 2009) and
because of that in the next section we are going to talk
about this algorithm and also explain how it works.

Structure of C4.5 in detection modules: We have
umplemented the C4.5 decision tree algorithm (Wang et af.,
2009) 1n our detection module 1n order to categorize the
samples. The input records of training have given and the
analogous gained ratio for every one of the element has
computed. The continuous and discrete elements have

recognized from the records of input. After that, the
tree has created based on the gained ratio (Paul ef al.,
2016).

In the next the every one of specific path n the tree,
the rules have created. The decision tree is the yield
of this module. The structure of the tree that has had
2 mtrusion records on its leaves has shown m Fig. 3.

Algorithm illustrate its DT structure:
wrong fragment <=0

| num_compromised <=0

| | count <= 236

||| dst_host srv diff host rate <= 0.24
dst_host_same_srv_rate <= 0.01

| sre_bytes <=1

| | rerror_rate <= 0.98

| |] serror_rate <= (.32
\

\

\

||| count <=2
|| ]| protocol_type =tcp: portsweep
| |1 | protocol_type = udp: satan

The mles of this two kind of intrusion is as following: IF
“wrong_fragment” <= 0 AND “num_compromised” <= 0 AND
count <= 2 AND “dst_host_srv_diff host rate” <= 024 AND
“dst_host same srv rate” <= 001 AND s'rc bytes” <= 1 AND
“rerror_rate” <= 098 AND “serror_rate” <= 032 AND
“protocol_type” =udp THEN attack = “satan”.

The rule for the “portsweep” intrusion: IF “wrong_ fragment” < = 0 and
“num_compromised” < = 0 and count < = 2 and “dst_host_srv_
diff_host_rate” < = 0.24 and “dst_host_same srv_rate” < = 0.01 and
“sre_bytes” < = 1 and “rerror_rate” <= 0.98 and “serror rate” < = 0.32
AND “protocol_type” = tcp THEN attack =*‘portsweep”

This two example of mtrusions rules which we have
shown in above, cover “satan” intrusion and “portsweep”

1528



J. Eng. Applied Sci., 12 (6): 1523-1537, 2017

Single packet come to the module

v

through its own tree structure

FEach detection module check the packet

v

The packet is
instrusion based on
DT structure

False

Label votes as "intrusion" and
put the weight of detection
module based of it

detection module beside of it

Label the votes as "normal" and put the weight of

v <
Send the result of each detection
module to aggregation module

v

Collect the votes and separate them
and sum up each group weight

v

Intrusion votes
weight>normal
votes weight

True

Send final decision to notification
module

!

Fig. 4: Distribution module

one. The rest of intrusions have covered in the same way
by the further rules that have created through different
part of traiming data by implementing C4.5 decision tree
for each of our detection modules.

Aggregation module: After labeling the instance that has
analyzed by detection modules, the result of all module
will be aggregated in the aggregation module. The
purpose of this module is to give a final decision based on
the result that 1t has received from the previous phase.
The weighted voting method has employed to aggregate
the results in this module. This method that 1s utilized
ordinary weighted voting will assign specific weight to
each vote based on voter features and after that the agent

that has the biggest weight will be selected as a final
answer. The default weight of each detection modules is
assigned as 1/N that N m here represent the number of
detection modules and in future, it will be changed
depends on each of modules mistakes. If the decision of
each module recognized as the correct answer, the weight
of it would increase into maximum 1 or if it is meorrect it
will reduce into minimum 0. The zero number means that
it will not affect the result. In the following, we have
explained sample scenario. Figure 4 has shown flowchart
of distribution module.

Based on Table 2, 5 modules will give their votes
about the same packet. Meanwhile, modules number 1 and
4 have comsidered it as an intrusion but rest of modules
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Table 2: Weight table of detection modules

Module
Variables 1 2 3 4 5
Weight. 0.3 0.15 01 0.55 0.25
Label Yes No No Yes No

consider it as a normal one. Based on performances of
these modules which had different performance about
packet before so their weight is different than each other
as 1t 1s showed in Table 2. Based on the values on the
table, the summarization of the vote for label “yes” is
0.85 and for label “No” 1s 0.50 so based on mentioned
results, aggregation module will consider the packet as an
ntrusion.

The duty of every TDS is to notify upper layer about
detected intrusion that it could be a human operator
(Administrator) or other systems. In the proposed method
after aggregation of votes and receiving a final decision,
if the packet has detected as intrusion, upper layer will be
notified. Figure 5 has shown flowchart of notification
module. In order to increase the flexibility of proposed
system m this module, we have designed control
parameter that enables the system to inform upper level

based on the probability of attack. For example, the packet
that has detected by most of the detection module as the
intrusion is more probable to be an attack than the one
that most of the modules has considered it as normal. As
result of that with changing control parameter we could
control the sensitivity of the system mn confronting with
detecting threats. The default amount of this module have
assigned based on the testing dataset and it could be
modified by administrator practically. Assigning this
parameter appropriately will effect on reducing FAR and
also mncrease the accuracy of our method. After notifying
upper layer this module receives a feedback and send 1t to
adaption module in order to improve the performance of
the system.

Adaptation module: The primary purpose of this module
is to add the ability of learning and adaption to our model
to be able to modify itself by changes in network traffic
patterns and threats. As we discussed in previous
sections, detection modules depend on ther own
structure of decision tree may hand over the different
decision about the same packet. It 1s evident that some of
this judgment could be wrong for example a normal packet
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would be considered as an attack or a malicious packet
could be seen as normal. So in order to improve system
performance, it 1s necessary to modify the modules that
make the wrong decision. In this module, three solutions
(Malialis and Kudenko, 2015) have provided to correct
and change the behavior of detection modules that are
based on reward and punishment method and GA
mutation (Pal and Parashar, 201 4) method. In next, each of
these solutions has explained in details. Figure 6 has
shown the flowchart of adaption phase of our method. In
reward solution those modules that were successful to
detect the purpose of the packet will be prized. In
here the term prize means that ther weight will be

increased i order to make them more efficient in
confronting with new packets. This increase will be as
specific number and their maximum number 15 1. If a
module correctly recogmzes a packet its weight 1s going
to increase. For example we have a model that its weight
18 0.7 after it detects an mntrusion correctly its weight 1s
going to increase to 0.8.

In mutation solution, due to detection modules may
have weak performance, it is necessary to replace and
modify weak modules with better ones in order to increase
the performance of the system. This process 1s same to
GA mutation (Pal and Parashar, 2014) phase. In order to
do it a new successful decision tree that has constructed
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base on the latest packet on the network will be replaced
by the prior version of modules that are not efficient and
all of their weight will be assigned as default. Tf the new
struchure shows better performance it receives reward and
its weight will be increased but if it 13 not it would be
punished or even replaced with new structure again.

RESULTS AND DISCUSSION

Evaluation and experimental results: In the previous
section we discussed the framework of proposed method
in this research. In this part we are going to evaluate our
proposed method over KDD Cup 99 dataset and also
analyze our results according to existing IDS evaluation
methods. First we have described the dataset that has
used for our evaluation, then we talked about evaluation
measures that have been used by researchers m order to
evaluate their approaches. Finally, we have talked about
our experimental results and the performance of the
proposed method and also we have compared our job
with two other algorithms in the end.

Dataset: Since 1999, the KDD Cup 99 dataset has
been the most widely used dataset for the evaluation
Intrusion detection methods and systems. The KDD’89
dataset is a subset of the DARPA 1998 dataset which is
the most popular data set used to evaluate TDSs. This
dataset was prepared by Stolfo ef al. and 13 built on the
data captured mn the DARPA9R IDS evaluation program.
Stolfo and Lee processed the tepdump data of the 1998
DARPA dataset and made it available for the KDD’9%
classifier-learning contest. Through the processing, the
binary tepdump data is transformed to connections that
contain some context mformation for each network
session. Despite some drawbacks, the KDD’99 dataset is
still the most widely used benchmark data set for
evaluating machine learning-based TDSs. Tt can be used
for testing machine learning algorithms without further
time-consuming preprocessing. Moreover, the data set
contains 39 different types of attacks which makes 1t a
comprehensive source for IDS evaluation. The KDD’99
data contains 2 sets: the traming set and the testing set.
Each set consists of a number of records called
connections. A connection is a sequence of packets in a
time frame when data flows to and from a source IP
address to a target IP address under some well defined
protocol. In the TCP protocol a commection has multiple
packets. For the UDP protocol, each commectionless
packet is treated as a comnection. Each connection is
labeled as either normal or a specific attack type. There are
4,898,431 connections in the training set and 494,021 in
the testing set. In our job we have used KDD 10% dataset
as test dataset that contams 97278 normal instances and
396743 intrusion nstances.

Features: In the KDD99 dataset, each connection has
42 features (including its class label) that contain
information about the session. The features can be
divided into 4 categories: basic, content, traffic and class.
The basic features contain the essential characteristics
about a connection record. The content features are
constructed from the payload of traffic packets and
contain host-related information such as the number of
login failures. The traffic features contain statistical
information such as the number of connections to the
same host within a two-second time window. The class
feature indicates if the connection is normal or intrusive;
it 1s used for traimng and evaluation A description of
each of the 42 features is listed n Table 1. These 42 input
attributes have either discrete or continuous values and
divided into three groups. The first group of attributes is
the basic features of network connection which include
the duration, prototype, service, number of bytes from
source [P addresses or from destination IP addresses and
some ages in TCP connections. The second group of
attributes in KDD99 is composed of the content features
of network connections and the third group 18 composed
of the statistical features that are computed either by a
time window or a window of certain kind of connections.
KDD’ 99 data include three independent sets: the whole
KDD traimng data, 10% KDD traiming data and KDD
correct data. Each record represents a network connection
described by 41 features and a label specifying the status
of this record as either normal or one of 39 specific attack
types. In KDD99 dataset these four attacks (DoS, U2R,
R2L and probe) are divided mnto 22 different attacks that
tabulated in Table 3.

Evaluation of IDS: An evaluation of a method or a system
1n terms of accuracy or quality i3 a snapshot in time. As
time passes, new vulnerabilities may evolve and current
evaluations may become irrelevant. In this section we
discuss various measures used to evaluate network
intrusion detection methods and systems.

Accuracy: Accuracy (Lippmann ef al., 2000) 1s a metric
that measures how correctly an IDS works, measuring the
percentage of detection and failure as well as the
number of false alarms that the system produces. If a
system has 70% accuracy, it means that it correctly

Table 3: Different type of attacks in KDD99 dataset

4 main intrusion class Tvpe of features

Denial of Service (DOS) Teardrop, srrt, pod,neptune, land, back

Probing Satan, portsweep, nmap, ipsweep

User to Root (U2R) Rootkit, loadmodule, perl,overflow, buttfer

Remote to User (R21.) Wareamaster, warezclient, spy,phf, multihop,
imap.guess passwd, ftp write
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Fig. 7: Confusion matrix
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Fig. 8: Tustration of confusion matrix in term of related
evaluation measurre

classifies 70 instances out of 100 to their actual classes.
While there is a big diversity of attacks in intrusion
detection the main focus is that the system be able to
detect an attack correctly. From real life experience, one
can easily conclude that the actual percentage of
abnormal data 1s much smaller than that of the normal.
Consequently, intrusions are harder to detect than
normal traffic, resulting in excessive false alarms as the
biggest problem facing TDSs. The following Eq. 1 is the
accuracy measure;

True Positive (TP) + True Negative (TN)
TP+ FP+ TN+ FN

Accuracy =

()
specificity (Wang, 2008): These
attempt to measuwre the accuracy of
classification for a 2-class problem. When an IDS
classifies data, its decision can be either right or wrong. Tt
assumes true for right and false for wrong, respectively.
If S 1s a detector and Dt 1s the set of test mstances there
are four possible outcomes described using the confusion
matrix given in Fig. 7. When an anomalous test instance
(p) is predicted as Anomalous (A) by the detector S,
1t 18 counted as True Positive (TP); if 1t 1s predicted as

Sensitivity and
2  measures

Normal (N), it is counted as False Negative (FN). On the
other hand, if a Normal (n) test instance is predicted
as Normal (N) 1t 15 known as True Negative (TN)
while it 15 a False Positive (FP) if it 1s predicted as
Anomalous (A).

The True Positive Rate (TPR) is the proportion of
anomalous instances classified correctly over the total
number of anomalous mstances present in the test data.
TPR 15 also known as Fig. 8 showes of confusion matrix in
terms of related evaluation Measures sensitivity. The
False Positive Rate (FPR) is the proportion of normal
instances mcorrectly classified as anomalous over the
total number of normal instances contained in the test
data as Eq. 2 has shown:

False PositiveRate(FPR) =
False Positive(FP) FalsePositive (FP) (2)
Negative(N) FP+ TN

The True Negative Rate (TNR) i1s also called
specificity that has shown in Eq. 3. The False Negative
Rate (FNR) has shown in Eq. 4:

True Negative (TN
TrueNegative Rate (TNR ) = e eg.a ve (TN) =
Negative (N)
True Negative (TN
rue Negative (TN) =1-FalsePositiveRate (FPR)
FP+TN
(3)
FalseNegativeRate (FNR) = FalseNeg?t.lve (FN) =
Positive
FalseNegative (FN) =1-TruePositiveRate (TPR)
TP+ FN
(4

Sensitivity is also known as the hit rate. Between
sensitivity and specificity, sensitivity 1s set at high
priority when the system is to be protected at all cost and
specificity gets more priority when efficiency is of major
concern. Consequently, the aim of an TDS is to produce as
many TPs and TNs as possible while trying to reduce
numbers of both FPs and FNs. The majority of evaluation
criteria use these variables and the relations among them
to model the accuracy of the IDSs. Misclassification rate:
This measure attempts to estinate the probability of
disagreement between the true and predicted cases by
dividing the sum of FN and FP by the total number
of pairs observed, (TP+FP+FN+TN). In other words,
misclassification rate 1s defined as (FN+FP) (TP+FP+
FN+TN).

Confusion matrix (Ghorbani ¢ al., 2009): The confusion
matrix 1s a ranking method that can be applied to any kind
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of classification problem. The size of this matrix depends
on the number of distinct classes to be detected. The aim
is to compare the actual class labels against the predicted
ones as shown in Fig. 7. The diagonal represents correct
classification. The confusion matrix for intrusion detection
is defined as a 2-by-2 matrix, since there are only 2 classes
known as intrusion and normal. Thus, the TNs and TPs
that represent the correctly predicted cases lie on the
matrix diagonal while the FNs and FPs are on the right and
left sides. As a side effect of creating the confusion
matrix, all four values are displayed in a way that the
relation between them can be easily understood. The
costs associated with the classification are shown in the
Fig. 7. As is evident, correct Classification (C;) has no
cost while incorrect classification (C, and C) brings with
it some cost. The cost elements ¢2 and ¢l can be same or
different depending on the cost of misclassification. In
IDS scenario a FN is far more damaging than a FP,
soc2=cl.

Precision recall and f-measure (Wang et al., 2010): As
it has shown in Eq. 5 precision is a measure of how a
system 1dentifies attacks or normal. A flagging is accurate
if the identified instance indeed comes from a malicious
user, which is referred to as true positive. The final
quantity of mterest is recall, a measure of how many
instances are identified correctly as it has shown in Eq. 6.
Precision and recall are often inversely proportional to
each other and there 1s normally a trade-off between these
two ratios. An algorithm that produces low precision and
low recall is most likely defective with conceptual errors
in the underlying theory. The types of attacks that are not
identified can indicate which areas of the algorithm need
more attention. Exposing these flaws and establishing the
causes assist future improvement:

. True Positive (TP)
Precision = — —
True Positive (TP) + False Positive (FP)
(5)
True Positive Rate (TPR) = Recall =
TruePositive (TP) _ True Positive (TP)
Positive TP+ FN
(6)
The F-measure mixes the properties of the

previous 2 measures as the harmonic mean of precision
and recall (Ghorbani et al., 2009). If we want to use only
one accuracy metric as an evaluation criterion, F-measure
is the most preferable. Note that when precision and
recall both reach 100%, the F-measure 1s the maximum, 1.e.,
1 meaning that the classifier has zero present false alarms
and detects 100% of the attacks. Thus a good classifier 1s
expected to obtain F-measure as high as possible. The
F-measure has shown m Eq. 7.

F-measure = 1 1 (7)

+
Recall

Precision

Evaluation of the proposed IDs: In this study, we evaluate
our method over different measures that we have
discussed before. Due to TDSs process stream data on the
network we have simulated KDD dataset as stream
network traffic to evaluate our job. The Traiming data in
our method contains 5 million records that we have
shuffled them randomly in order to change the records
order and prevent from affecting on the evaluation result.
After preparing data, the records respectively has given
to the algorithm. To be able to simulate different scenario
we have designed function that it could simulate traffic
when 1t has provided by particular mput number. As a
result when we change the value of this service we could
simulate different network traffic data. As long as in the
proposed algorithm, receiving feedback (Paul et al., 2016)
has considered as a method to evaluate algorithm and
also 1t 18 necessary for modifymg detection modules of
the algorithm, simulating feedback scenarios is so
necessary to evaluate our algorithm. Because of that, we
have designed feedback structure that it could give
feedback to algorithm about reported mstances from 0-
100%. In this structure, zero amount means that the
system will not receive any feedback from upper level
agent about 1its performance and it will behave based on
its own structure only. The 100% amount of feedback
means that the system will receive feedback per each
recognition and this feedback let the system to improve
its performance based on received feedback. Another
amount that would be assigned from 0-100 will
demonstrate the different percentage of feedback. If the
value of feedback iz something among 0-100, the
recognitions that have assigned by feedback will be
chosen randomly based on random function i order to
control feedback value through simulation.

Experimental results: In the case of evaluating our
proposed model we have done 6 different test over it
which each of them has considered to evaluate particular
parameter inside of our method or compare our proposed
method with another job. The results of evaluation of
these parts have calculated based on the average of ten
times execution in order to examine our proposed method
more precisely. As it has shown in Table 4 and Fig. 9
when we mcrease the number of detection modules 1t will
effect on the accuracy of our algorithm and it 15 because
of the fact that we are increasing the number of the
classifier in detection modules. Of course, the relation of
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Fig. 11: Impact of mutation on the accuracy of proposed
method

increasing accuracy is not completely linear by growing
number of detection modules; 1t means that using a
various number of detection modules will not give us one
hundred percent accuracy. By the way based on the
promising results of this evaluation we can say by
increasing number of detection modules we could receive
better performance and accuracy.

In this evaluation, our proposed method have
examined through different scenarios of feedback
(Paul et al., 2016) chance. As it has shown in Table 5 and
Fig. 10, increasing the feedback chance will increase the
accuracy of our method. This is due to it is more probable
for our algorithm to modify and improve the performance
of the detection modules. Receiving more feedback will let

Table 4: Accuracy of detection modules

No. of detection modules Averageaccuracy
5 93.6
10 94.2
25 96.4
50 97.7
75 97.9

Table 5: Accuracy of proposed method based on amount of received feedback

Feedback chance (%) Averageaccuracy
0 0.89
25 0.92
50 0.97
75 0.96
100 0.97

Table &: Impact of mutation on the accuracy of proposed method
Mutation rate Average accuracy

0.00 0.94
0.25 0.96
0.50 0.97
0.75 0.95
1.00 0.91

Table 7: Impact of amount of instances on respond time of proposed method
No. of samples Total runtime (sec)

100 3.52
1,000 3.66
10,000 5.54
100,000 17.80
1,000,000 136.05

the algorithm to replace the structure of those detection
modules which are not useful in detecting and recogmzing
packets properly or reduce their weight.

The mutation method in adaption module provides
a better structure for detection modules with random
changes m the structure of some modules. As it has
shown in Table 6 and Fig. 11, increasing the rate of
mutation method will not help to receive better accuracy
all of the time. It 13 because when lots of mutation happen
in the algorithm, it is probable to wrongly replace the
structure of efficient and beneficial detection modules
with those that are weaker and mefficient and cause lower
accuracy rate. As result of that Mutation rate should be
assign as the appropriate amount which hands over a
good accuracy.

The speed of detection is so important in TDS
because of that we have examined the relation between
the speed of executing algorithm and amount of incoming
instances. As it has shown in Table 7 and Fig. 12 when we
mnerease the number of mstances the runtime will raise
that it is because of the training of decision trees in
detection module and modify them when it 1s necessary.
In another word 1f we consider traming time of detection
modules as t this amount will be separated from the
number of instances that will be examined by algorithm
after training and diagnosis time of each new sample
15 linear.
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In the first step we consider 10% KDD dataset that
contains 97278 normal mstances and 396743 mtrusion
instances as a test dataset. In below we have shown
confusion matrix of proposed algorithm in Table 8. As 1t
has demonstrated, the quantity of normal instances that
have recognized wrongly as an intrusion (false alarm) 1s
893 instance or 0.09%. Based on Table &, the F-measure
amount for normal category and mtrusion category of
data is in Table 8 and Fig. 13. In order to evaluate the
performance of proposed method m detecting the various
type of attacks, we have put instances of 10% KDD
dataset in to 5 main categories. Table 9 has shown
confusion matrix result of this evaluation. Based on the

Table 8: Confusion matrix of proposed algorithm

Variables  Normal Attack Recall  Precision F-measure
Normal 96,385 393 0.99 0.86 0.92
Attack 15,097 381,646 0.96 0.99 0.97

Table 9: Confusion matrix in various tvpe of attack
Variables Normal DOS ~ PRB R2L U2R Recall Precision F-measure

Normal 95,983 1,058 149 68 20 0.98 0.91 0.94
DOS 9,037 378,652 2845 908 16 0.96 0.99 0.97
PRB 116 240 365893 0 0.89 0.54 0.67
R2L 77 202 63 784 0 0.69 0.42 0.52
U2R 3 8 0 4 37 071 0.50 0.58

Table 10: Comparison of proposed method with two other algorithm

Variables Proposed method Online Naive Baves Online K-NN
Accuracy 0.97 0.93 0.96
Total muntime (sec) 708 JF68.28 365.42=105

results that we have received, the amount of F-measure
could be calculated for each class as it has shown in
Table 9 and Fig. 14. We have compared our proposed
algorithm with the algorithms that has proposed by
Gumus ef af. (2014). In their method, they have employed
online Naive Bayes and online K-NN algorithms with
using KDD 99 datasets. In Table 10, the best accuracy of
theirr algorithms have compared with our proposed
algorithm. The respond time of algorithms has calculated
based on 20 thousand mstances and their accuracy after
traimng.

As 1t has shown in Table 10, learning time of
proposed method 15 much faster than other 2 algorithms
and 1t 1s due to distributed structure of detection modules
1n our job which are a group of classifiers that are working
distributed and each of them has tramed by a different
portion of data. This pomt will decrease traimng time
considerably. In addition, we can notice that accuracy of
proposed method is much better than 2 other algorithms.
Based on promising results, our method has better
respond time in comparison with online K-NN algorithm
and 1t has better accuracy as compared to online Naive
Bayes algorithm.

CONCLUSION

In this study, the proposed model of an adaptive
network based IDS which has a modular structure and its
detection modules are based on C4.5 decision tree 1is
explained. The experimental result shows that our
proposed method has better accuracy and respond time
1in comparison with two other algorithms. We believe that
this improvement 1s due to the fact that our approach has
a modular structure and its detection modules work
distributed and alse adaption module enables our
proposed methed to change and modify itself to cope
with the new intrusion. Tn future work, we try to work for
online capturing of packets from the network and will use
that data as a test dataset which 1s tested against this
method.

1536



J. Eng. Applied Sci., 12 (6): 1523-1537, 2017

ACKNOWLEDGEMENT

This research was supported partially by the High
Impact Fund of National Umversity of Malaysia
(Malaysia; Grant code: DIP-2014-037)

REFERENCES

Desale, K.S., CN. Kumathekar and A.P. Chavan, 2015.
Efficient mntrusion detection system using stream
data mining classification technique. Proceedings of
the 2015 International Conference on Computing
Communication  Control  and  Automation
(ICCUBEA), February 26-27, 2015, IEEE, New York,
UUSA., ISBN:978-1-4799-6892-3, pp: 469-473.

Ghorbami, A.A., W. Lu and M. Tavallace, 2009. Network
Intrusion Detection and Prevention: Concepts and
Technmiques. Vol. 47, Springer, Berlin, Germany,
ISBN:978-0-387-88770-8, Pages: 211.

Gong, W., W. Fuand L. Cai, 2010. A neural network based
intrusion detection data fusion model. Proceedings
of the 2010 Third International Joint Conference on
Computational Science and Optimization (CSO), Vol.
2, May 28-31, 2010, IEEE, Huengshan, China,
ISBN:978-1-4244-6812-6, pp: 410-414,

Gumus, F., C.O. Sakar, 7. Erdem and O. Kursun, 2014.
Online Naive Bayes classification for network
intrusion  detection. Proceedings of the 2014
IEEE/ACM International Conference on Advances
i Social Networks Analysis and Miung
(ASONAM), August 17-20, 2014, TEEE, Beijing,
China, ISBN:978-1-4799-5878-8, pp: 670-674.

Koc, L., T.A. Mazzuchi and S. Sarkam, 2012. A network
intrusion detection system based on a hidden Naive
Bayes multiclass classifier. Expert Syst. Appl., 39:
13492-13500.

Kumar, S. and A. Yadav, 2014. Increasing performance of
intrusion detection system using neural networlk.
Proceedings of the 201 4 International Conference on
Advanced Commumnication Control and Computing
Technologies (ICACCCT), May 8-10, 2014, IEEE,
Ramanathapuram, India, ISBN:978-1-4799-3915-2, pp:
546-550.

Lin, W.C., SW. Ke and CF. Tsai, 2015. CANN: An
intrusion detection system based on combining
cluster centers and nearest neighbors. Knowl. Based
Syst., 78: 13-21.

Lippmann, RP., D.J. Fried, I. Graf, J.W. Haines and
KR. Kendall et al, 2000. Evaluating intrusion
detection systems: The 1998 DARPA off-line
intrusion detection evaluation. Proceedings of the
2000 DARPA Information Survivability Conference
and Exposition (DISCEX), January 25-27, 2000, IEEE
Computer Society Press, Los Alamitos, CA, pp:
12-26.

Malialis, K. and D. Kudenko, 2015, Distributed response
to  network mtrusions using — multiagent
reinforcement learning. Eng. Appl. Artif. Intell.,
41: 270-284,

Pal, D. and A. Parashar, 2014. Improved genetic algorithm
for intrusion detection system. Proceedings of the
2014 International Conference on Computational
Intelligence and Commumcation Networks (CICN),
November 14-16, 2014, TEEE, Bhopal, India,
ISBN:978-1-4799-6930-2, pp: 835-839.

Paul, S., T. Makkar and K. Chandrasekaran, 2016.
Extended Game Theoretic Dirichlet Based
Collaborative Intrusion Detection Systems. In
Computational Intelligence, Cyber  Security
and Computational Models, Senthilkumar, M.,
V. Ramasamy, S. Sheen, €. Veeramani and
A. Bonato et al., (Eds.). Springer, Singapore, pp:
335-348.

Rahmatian, M., H. Kooti, I.G. Harris and E. Bozorgzadeh,
2012. Hardware-assisted detection of malicious
software in embedded systems. TEEE. Embedded
Syst. Lett., 4: 94-97.

Sahu, SK. and SK. Jena, 2016. A multiclass SVM
classification approach for intrusion detection.
Proceedings of the International Conference on
Distnibuted Computing and Internet Technology,
Tanuary 15-18, 2016, Springer, Bhubaneswar, India,
pp: 175-181.

Shanmugavadivu, R. and N. Nagarajan, 2011. Network
intrusion detection system using fuzzy logic. Indian
I. Comput. Sci. Eng., 2: 101-111.

Somi, M., M. Ahirwa and S. Agrawal, 2015, A survey on
intrusion  detection technicques in MANET.
Proceedings of the 201 5 International Conference on
Computational Intelligence and Communication
Networks (CICN), December 12-14, 2015, IEEE,
Tabalpur, India, ISBN:978-1-5090-0077-7, pp:
1027-1032.

Wang, G., J. Hao, . Ma and L. Huang, 2010. A new
approach to mtrusion detection using artificial neural
networks and fuzzy clustering. Expert Syst. Applic.,
37 6225-6232.

Wang, T, Q. Yang and D. Ren, 2009. An intrusion
detection algorithm based on decision tree
technology. Proceedings of the Asia-Pacific
Conference on Information Processing APCTP-2009,
Vol. 2, Tuly 18-19, 2009, IEEE, Shenzhen, China,
ISBN:978-0-7695-3699-6, pp: 333-335.

Wang, Y., 2008. Statistical Techmques for Network
Security: Modern Statistically-Based Intrusion
Detection and Protection. Information Science
Reference, New York, USA., ISBN:978-1-59904-708-9,
Pages: 305,

1537



	1523-1537_Page_01
	1523-1537_Page_02
	1523-1537_Page_03
	1523-1537_Page_04
	1523-1537_Page_05
	1523-1537_Page_06
	1523-1537_Page_07
	1523-1537_Page_08
	1523-1537_Page_09
	1523-1537_Page_10
	1523-1537_Page_11
	1523-1537_Page_12
	1523-1537_Page_13
	1523-1537_Page_14
	1523-1537_Page_15

