Tournal of Engineering and Applied Sciences 13 (19): 7772-7782, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Development for Remote Calculation for Smart Grid

Curriculum:System Programming Approach

Teong-Ho Bak and *Jun-Ho Huh
"Department of Computer Engineering, Pukyong National University, Daeyeon, Busan,
Republic of Korea
Department of Software, Catholic University of Pusan, Busan, Republic of Korea

Abstract: In this study, the curriculum for smart grid remote reading was developed. When the character string
formula is input in the client and it is transferred to server, the server receives and calculates character string

sent from client and sends it to the client again. This study proposes a curriculum for the direct implementation

of Shell and command is action in the system programming for smart grid remote reading for communication
using message q and shared memory for creation of PIC calculation and for the implementation of remote
calculator using socket. The infix notation calculator using stack was brought through the header file and the
result value was converted and transferred to character string using sprint. In the further study, the performance
of education by combining it to the middle and high school curmiculum will be measured.

Key words: Remote calculation, smart grid, micro grid, curriculum, programming, demand response for micro

grid

INTRODUCTION

As the threat of the nuclear power plant is
accelerated due to the earthquake in Pohang, the smart
grid has become a key issue. The smart grid is an
intelligent power grid and the power rate calculation is
very important (Huh and Seo, 2017, Dubey and Tomar,
2017; Pullagujju, 2016; Gururaj, 2016). However, textbooks
and studies on this 1ssue are very msufficient in Korea.
Accordingly, this study proposes a curriculum to
understand Shell command interpretation function action
n the system programming and to execute the command
mterpretation function which 1s a representative actior,
for smart grid remote calculation (Huh and Seo, 2017,
Arora et al, 2017, Bansal and Shricastava, 2017,
Kickmeier-Rust and Albert, 2013).

To understand file system inside the system LS-ALR
action was embodied which is a command of Linux. As in
the existing action, file type, file authority, number of hard
link, user name, group name, size, date, time and file name
are output in sorting when the command 1s put and it
also, outputs sub-directories as well as external files
(Brut et al., 2008, Floridi, 1999; Huh and Seo, 2014,
Huh et al., 2016; Ngu and Huh, 2017; Hoic-Bozic et al.,
2009).

The child process 1s generated using fork formula
and the equation 1s calculated in the child process which
is received from the parent process. And the result value
is delivered to the parent process. The main function used

here 1s msgsnd() function and the child process
produces a result value by changing the infix notation to
postfix notation (Ma and Zhou, 2000, Varga, 1999,
Aydogmus and Aydogmus, 2009; Mason et al., 2013).

To understand a socket programming, the remote
calculator is implemented wusing TCP/UDP. When
character string formula 1s mput in the client and sent to
server the server calculates character string from client
and then sends 1t to client again. The calculator structure
used in the calculation is a infix notation calculator model
using stack and it is set to receive data by converting to
character string using sprinf.

Design of implementation: To implement of Shell, a first
implementation detail the function 18 figured out as
follows:

¢ Command interpreter function
» Programming function
» User configuration function

Representative functions of shell: The 3 representative
functions of Shell and description of each function is as
follows. Firstly, command interpreting function performs
interpreter and translator role that mterprets and delivers
command between the user and the kernel. It mnterprets
command mput by user and command read from file and
then runs a suitable program. Secondly, programming
function is a function that creates a program as there is a

Corresponding Author: Jun-Ho Huh, Department of Software, Catholic Umversity of Pusan, Geurmjeong-Gu, 57 Oryundae-Ro,

Busan, Republic of Korea (ROK)

7772

J. Eng. Applied Sci., 13 (19): 7772-7782, 2018

Read command

Shell seeks command

Ts it built-im~Jes
command?
No

Creat child process

Parent shell await Execute kernel execution
v file in child process
s child process Finish after completing
inished2 child process work
Yes

Execute command

Fig. 1: Operating flow chart of shell

Table 1: File type separator

Character File type

- General file

a Directory

b BRlock device special file
c Letter device special file
I Symbolic link

programming function inside Shell. Thirdly, user
configuration function configures user environment using
mitialization file function of Shell It can create user
enviromment characteristics by user such as path set,
basic right set for new file and various environmental
settings in the initialization file.

Figure 1 is an operating flowchart of Shell that is a
process of mterpreting and runming command. To
imnplement LS-ALR command, the prior knowledge as
below is required. The details are as follows. Firstly, it
needs to know the results when command is input for
implementation.

Algorithm basic ‘LS -ALR’ command action:
drwxr-xr-x 2 root root 4096 2015-10-13 20:17
dirwser-xar-x. 11 oot root 4096 2015-11-01 03:05 ..
Makefile

-rw-r-r--. 1 root root 64 2015-10-13 02:33

-rwxr-xr-x 1 root root 6948 2015-10-13 20:13 Myran
-rw-r-r--. 1 root root 608 2015-10-13 20:13 Myran.c
TW-T--T-- 1 root root 3542 2015-10-13 19:59 Myran.c-
-TW-T--T-, 1 root root 39 2015-10-13 19:16 Myranh
-TW-T--T-, 1 root root 2312 2015-10-13 20:13 Myran.o

When command is input as in Algorithm file type, file
authority, number of hard link, user name, group name,
size, date, time and file name produced. And at the same
time, it 1s sorted i the order of file name and it 13 output
1n the same expression method with the sub-directory.

Table 1 The is a separator for file type and it must be
considered when implementation. File type search related
macro:;

* Function
+ If true, FIFO file
¢ Tf true, letter device special file

Lslifefsfs]s]7]o]2]

Lslielelals] [slzlo]2]
4 4
Lals] [s17] [of2]

s 4 4
BN

Ls]i]e]

4 ¥

[s]
4

L1 [
Hgn

¥
[s]
4 4
Lilsle]

[]
4 4
18] Llz] [2]0]

4 4

Lifalslols] [2I3]70¢]

4

L2fsf4fsfef7fs]o]

Fig. 2: Merge sorting structure

s Tftrue, directory

» Iftrue, block device special file
» Iftrue, general file

s Tftrue, symbolic link file

s Iftrue, socket file

The macro names 1s a collection of macros used when
file type separator is output. Example of user authority:

Ex)st_modeand (S_IREAD >>3)

An example related to the user access right
implementation. The access authority of group and other
users than owner 1s carried out by moving the value of
st_mode to 3 bit to left and performing AND by moving
the constant value to 3 bit to right. The information is
output in sorting and the sorting method used here will be
a merge sorting. The related theory 1s as follows. The
merge sorting is a sorting method that divides whole
elements into one unit and then merges the divided
element again. Complexity 1s nlogn which 1s most efficient
among various sorting methods. Figure 2 1s a merge
sorting structure and the sorting order is as follows:

s Divide the sorted data set in half
* If the divided sub data set size 1s more than 2, 1 1s
repeated to this sub data set

7773

J. Eng. Applied Sci., 13 (19): 7772-7782, 2018

¢« Combine 2 sub data sets that are from the same set
and make one data set. When merging it, the element
of data set 1s sorted according to the order.

* Repeat 3 until the data set becomes 1

Merge sorting method. This method will be used to
output file list in this study.

MATERIALS AND METHODS

Proposed system: Before realizing Shell the function must

be clarified. The goal 1s as follows:

¢ If the user input command, the relevant command is
run

* If the user does not nput suitable command, it
outputs error

¢ TIf suitable command is executed, child process is
created at parent process through fork. And in the
child process, the program 1s executed according to
the input command at the parent process through s
exec function group

¢ Parent process waits until child process is finished

+ Runcd and Is (function added)

* Input commands are recorded in log file, 1e., txt file

Specific plan is as in specific plan for Shell

implementation:

* Step 1: Parent process designates mfinite loop as
while (1)

+ Step 2: Recognition of command entered to parent
process: Use scanf to save command and option in
the form of pointer, respectively

¢ Step 3: Implement Ls, copy process through fork
function and deliver command option (suitable
command recognition inspection and action check)

* Step 4 Cd implementation

* Step 5: Log file record implementation through time
function citme and fpirntf function

As in the overall action methed is that parent process
1s rotated to infimite loop which is branched to fork ()
according to command entered to parent process in order
to implement relevant process.

Figure 3 1s an implementation of step 1 and 2.
Yellow box indicates the storage method of character
string using a token. Orange box indicates the last of
character string by rotating replicator 1 on the loop
together. And it designates NULL 1 the last of character
string according to the rule of existing exec function
group. In summary, parent process is rotated to infinite
loop using while and it was planned to save command and

command['];
seps[] = H
*token;

*argv| "],
i=0;

printf()i
gets(command);

token=strtok(command, seps);

while(token! =)

I
1

argv[i++] =token;

token=strtok(, seps);

printfi
exit(|);
bréak:

i execv

printfi
exit();

Fig. 4: Check option delivery to implement step 3

each option in the form of pomter from user through scanf
function. But as the command and path must be separated
based on space bar the study has to use the ‘tolken’
library. Strtok function prototype:

char*strtok (char*str,const*delimiters)

The 15 a function that divides character string and str
is character string sort. And delimiters are sort that saves
the separators. In the directly implemented mysh.c, seps[]
sort is a separator sort.

As 1n Fig. 4, the execution part 18 made temporarily
and is was executed in Shell in order to check action in
step 2. Figure 5 1s confirmed its action by implementing 1s.
Option command is delivered but the following problems
take place. Firstly, parent process does not wait for fimsh
of child process. Second, it runs when other command is
used than the designated command. Figure 6 1s code
added to solve previously mentioned problems.

7774

J. Eng. Applied Sci., 13 (19): 7772-7782, 2018

Park_Shell: 1s -al
Park_Shell: &4 20
drwxr-xr-x. 2 root root 4096 2015-11-13 23:45

drwxr-xr-x. 4 root root 4096 2015-11-13 20:23 .
-IW-r--r--. 1 root root 833 2015-11-13 23:45 mysh. ¢
-rwxr-xr-X. 1 root root 7425 2015-11-13 23: 45 test

Fig. 5: Result of execution with problem

if(execv(
I
printf(
exit();
}
break;

}
default:

while(wait(&status)!=pid)
continue;
break;

Fig. 6 Code creation for synchromization (step 3
implementation (1))

if (stremp(argv[©], y==0)
{

if (execv(

{

sargv)==-1)

printf()i
exit();

printf(
exit(1);

Fig. 7. Code creation for synchromization (step 3

implementation (2))

Using wait command, it made parent process to wait
for the fimsh of child process. To clarify the designated
command, it uses argv [0] as a separator which is
customarily used when execve function 1s used as in
(Fig. 7) in order to determine if sentence.

Figure 8 1s a result of previously mentioned problems
implemented through the process of Fig. 6 and 7. To
implement step 4, c¢d the process is copied as in the
previcus method and directory is changed m the copied
process. Then, the result of cd called from child process
at parent process 1s not reflected. As cd command is
built-in command of Shell, if ¢d command is created as a
separate program, the order becomes c¢d command
umplementation => creation of child process(cd) in Shell -

drwxr-xr-x. 2 root root 4096 2015-11-14
drwxr-xr-x. 4 root root 4096 2015-11-14
-rw-r--r--. 1 root root 1180 2015-11-14
-YWXr-xr-x. 1 root root 7775 2015-11-14
[Park_Shell]:ls -al

A 20
drwxr-xr-x. 2 root root 4096 2015-11-14
4 root root 4096 2015-11-14
-rw-r--r--. 1 root root 1180 2015-11-14
-YWXr-xr-x. 1 root root 7775 2015-11-14
[Park_Shell]:as

YO E CiAl LHsIMR
[Park_Shell]:fa

YENE CiAl 2HSIMR

[Park_shell]:|]

drwxr-xr-x.

Fig. 8 Designated problem solving and result of step 3
implementation

if (stremp(argv[©],)==

chdir(argv[1]);
continue;

else if(stremp(argv['],
{
if(argv[.]!=)

printf(
continue;

getcwd (buff_for_pwd, 100);
printf(
continue;

,buff_ for_ pwd);

Fig. 9: Step 4 (cd, pwd) implementation

[Park_Shell] : pwd

Slxl c|8]Eg|: /Park/My_sh
[Park_Shell]:cd /Park
[Park_Shell]:cd /

[Park_Shell] :pwd
i CI¥EE|: /
[Park_Shell]:|}

Fig. 10: Cd and pwd implementation result

directory change at child process. As mn this manner, if the
child process is returned the directory of Shell is not
changed.

Figure 9 is a code created to solve the above problem
and the method 1s as follows. Cd function 1s mserted to
the main directly and cd is run according to *argv[0]
character string and ‘continue’ is inserted to exceed fork()
function.

Figure 10 is a result to implement and run step 4 and
the mentioned problems are all solved. Meanwhile, step 5
is to create execution command and time recording. Figure
11 1s to create function that records log file and the text
file to record opens m “a’” type. (If there is no file, open in
“w’ mode), uses time and ctime function.

7775

J. Eng. Applied Sci., 13 (19): 7772-7782, 2018

Write_log(

*command)
{
t;

time(&t);

*£p;

fp=£fopen (
if(fp==)
{
fp=fopen (
if(fp==)
{
printf(
return;
}
}

fprintf (£fp,
fclose(£fp);

,command, ctime(&t));

Fig. 11: Log file recording function

Park_log.6.txt 3¢ l

h'w'd : Sat Nov 14 22:29:01 2015
exit Sat Nov 14 22:29:04 2015

Fig. 12: Ctime function prototype

Write log(*command)

{
t;
time(&t);

*£p;

fp=£fopen(
if(£p==1Ui)
{

fp=fopen (

i€ (£p==1ULL)
{

printf(
return;
}
}

fprintf (£fp,
fclose(fp);

,command, ctime(&t));

Fig. 13: Problem solving and step 5 implementation

Algorithm ctime function prototype:
#include <time. h>
char *ctime (const time_t *clock)

In ctime function 1s a function that converts sec. unit
time to a type that is easy to see by human and to return
1t to character string. It 1s output in day, month, day, hour,
min, sec and year.

When Fig. 12 is executed, the result of Fig. 13 can be
obtained and it shows log file 1s saved. But there are two
things to consider based on the above results. First when
command record starts by finishing and nnming program
with exit input, it is not created in connection with the
existing file but log file is created at the top path of
execution file (In the Fig. 12, exit 1s mput once and
there is no further record). Second, log file needs to be

Dir (path) variable] HH Command |—| Dir (path)]

Whole input

Fig. 14: LS -ALR implementation drawing

sorted and output but the length per sentence 1s different
and the legibility is poor. To create high quality program
two problems must be solved.

To solve the above problems, Fig. 14 code is created.
When file is open, it is designated that the log file is
created n a specific path. To enhance legibility of log file,
it uses printf option, i.e., conversion character string
option. The description of option used here 1s as follows.
Code used in problem solving; “%0-20 sec” mark used in
means left sort and the number ‘20" means *20 columnns are
secured and used.

Implementation of LS-ALR command: As mentioned in
the Introduction, now Linux command LS-ALR is
implemented. The goal for implementation 1s as follows:

¢ Tnput must be operated when it is input with 2 (dir)
format

¢ Qutput value-file type, file authority, no. of hard link,
user name, group naime, size, date, time and file name

s Qutput must be sorted out in the file name order.

LS-ALR mnplementation goal

The implementation goal is as in and each
function 1s mplemented using the resource structure
theory. When receiving input from keyboard, command
part and dir part must be separated. Thus, when
implementing with program, it is designed to implement in
the method in Fig. 15.

Meanwhule, Fig. 16 13 inplemented using C in the
input part based on design. Figure 17 shows sort to
output file information. Remaining revision time or other
part are created in additional sort, so that, it implements
the time _t content 18 brought in the stat structure file.

As m Fig. 18, the mformation on type and authority of
files in sub directory is obtained. Based on such
informatiorn, the file type and authority must be clarified.
For the clarification, the method used in the above is a
method to use constant and macro i the required
knowledge part.

Figure 19 and 20 are set of if sentence to clarify files.
These sets save file separators into sort based on if
sentence. S ISDIR (mode) (((mode) and 0x4000) True
{(when it 13 directory).

7776

J. Eng. Applied Sci., 13 (19): 7772-7782, 2018

In the clarification between file and directory, if

char command[50]; condition is (Fig. 9), for example. Tt is implemented to hang

char dirname[10]; if sentence simply and to mput separators mto sort such

as ‘d and ‘T according to the result value. Total

scanf ("%s" ,&command) ; implementation step 1s a sum of file block unit other than
(strcmp (comand! " ll ") ! =0) { file quantlty as in Flg 21-23:

» Function name: Funce Dir (file directory)
¢ Printf (finle information output)
» Determine whether there 1s sub director or not

puts("command error");
-1;}

] ¢ Func Dir (File directory)
scanf ("%s" ,&dirname) ;

Implementation drawing for printing sub directory. To

(DirSeek(dirname)==-1) design sub directory, the regression method as in the
{ above figure 13 used. The finish point of regression
puts("& ol "); is the ‘determination of whether there is sub directory
-1; or not.
} Connection list is used as a resource structure to

output information of each file. It serves to contan stat
structure mformation in the Info st in the structure

free(dirname);
()i defined earlier. At the same time, it inserts node and

0; . . : . .
f outputs nformation of file by deleting node of connection
list. The result of program created by summing all designs
Fig. 15: Input part implementation n this study 18 as in Fig. 24. Figure 25 1s a comparison
photo between implemented command and existing

[ope [user | wser [user | growp | group | growp [other | cther | other | space | command

Eii"nf‘:&.‘,“;‘é:i'&i';“QL??ISLT?:&".,“M drwxr-xr-x. 2 root root

Fig. 17: Check existing function through s
Fig. 16: Sort to output file information command

//userMOD
void Inspection file(struct stat *buf, Info st * info) (buf->st_mode & S_IRUSR)
{ info->permission[PERl]='r";
//di
(S_ISDIR(buf->st_mode)) info->permission[PERl]="'-";
info->permission[PERO]="'d"; (buf->st mode & S IWUSR)

(S_ISLNK (buf—>st_mode))
info->permission[PERO]="1";
(S_ISCHR(buf->st mode))
info->permission[PERO]="c"; info->permission[PER2]="'-";
(S_ISBLK (buf->st_mode)) (buf->st mode & S IXUSR)
info->permission[PERO]='b"'; in?o—>permi§sion[PER3]='x";

(S ISSOCK (buf->st mode))
info->permission[PERO]='s"; (buf->st_mode & S§_ISUID)

(S_ISFIFO (buf->st_mode)) info->permission[PER3]="s";
info->permission[PERO]="P';

info->permission[PER2]="'w";

info->permission[PER3]="-";

info->permission[PERO]="-";

Fig. 18: File separating function implementation (1)

7777

J. Eng. Applied Sci., 13 (19): 7772-7782, 2018

//user
(buf->st_mode & S_IROTH)
info->permission[PER7]='r";

info->permission[PER7]="-";
(buf->st_mode & S_IWOTH) / /
info->permission[PER8]="'w"; group
(buf->st_mode & S_IRGRP)

info->permission[PER8]="-"; info->permission[PER4]='r"';

(buf->st_mode & S_IXOTH) //stiky
{ (buf_>st mode & § ISVIX) info->permission[PER4]='-";
uf->st mode
in?o->pemi;sion[PER9]='t'; (huf->5t_m°de & S_IWGRP)
info->permission[PER5]="w"';

info->permission[PER9]='x";

}
info->permission[PER5]="'-";
{ (buf->st mode & S IXGRP)
(buf->st_mode & S_ISVIX) - . v
info->permission[PER9]='T'; 1nf°_>pemlss‘l°n[pER6]= X7
) o (buf->st mode & S_ISGID)
N info->permission[PERI]='-"; info->permission[PER6]='s";
info->permission[PER10]="\0"; info—>permission[PER6] ='_";
Fig. 19: File separating function implementation (2)
.ﬂ_ ﬂl 56 ((entry=readdir(dirpt)) !=NULL)
{
-rw-r--r--. 1 root root 5388 e toNeme, —yiyane)?
. strcat(fileName, "/");
strcat (fileName,entry->d_name);
-rw-r--r--. 1 root root 6584 ((Lobat 1 LaName, 5af) —0))
{
-rw-r--r--. 1 root root 144 info=(Info_st *)malloc((Info_st));
-rwxr-xr-x. 1 root root 12231 pwd=getpwuid(buf.st_uid);
grp=getgrgid(buf.st gid);
-rWw-r--r--. 1 root root 9841 strepy (info->userid, pwd->pw_name);
strepy (info->groupid, grp->gr_ name);
-rw-r--r—--. 1 root root 2602)))
info->linkcount=buf.st nlink;
=YW-Y==Y=-=. 1 root root 2376 info->size=buf.st_size;
—-FW=)Y ===, 1 root root 1322 time=localtime(&buf.st _mtime);

info->date[0]=(time->tm mon)+1;
Fig. 20: Example to implement total part info->date[l]=time->tm_mday;
info->time[0]=time->tm hour;
info->time[l]=time->tm min;

List list;

L] — T]
ListElmt * elmt={'\0'}; Fig. 22: Implementation of outlet using connection list (2)
% 3
Info_St lnfo; [root@localhost TT]# ./Testing
* x 11 /
DIR dirpt; 7
x Al 128
St‘ruCt dlrent * entrY? drwxr-xr-x13 root root0 118 1 09:21 sys
dr-xr-xr-x2 root rootl2288 108 4 13:16 sbin
StruCt Stat buf; drwxr-xr-x2 root root4096 92 23 20:50 srv
* . drwxrwxrwt34 root root4096 118 1 03:34 tmp
struct group grp; Arwx—————— 3 root root4096 102 3 22:04 .dbus
drwxr-xr-x24 root root4096 10E 3 22:00 var
struct PESSWd * P'W'd.} druxr-xr-x2 root root4096 1028 5 01:12 temp
. drwxr-xr-x2 root root4096 92 23 20:50 mnt
Struct tI‘II * tlme; dr-xr-xr-x175 root root0 11¥l 1 09:21 proc
. drwxr-xr-x18 root root3820 11%® 1 00:21 dev
char fileName [NAME M.A.K] H dr-xr-xr-x30 root root4096 119 1 00:21 .
. - drwxr-xr-x7 root root0 113 1 09:21 selinux
int readc=ﬂr totﬂ.]_:u; drwxr-xr-x2 root root4096 10@ 17 02:43 mywork
. drwxr-xr-x4 root rootl1024 108 25 02:29 home
char * dlrpath; drwxr-xr-x3 root root4096 118 1 00:22 media
drwxr-xr-x117 root rootl2288 118 1 00:55 etc
drwxr-xr-x2 root root4096 113 1 02:40 CIEE2E
dr-xr-xr-x5 root rootl024 108 3 22:02 boot
list init (ilist, Deletelnfo) . dr-xr-xr-x30 root root4096 11® 1 00:21 ..
— 4 dr-xr-xr-x11 root root4096 109 3 22:08 1lib
dr-xr-x---27 root root4096 118 1l 13:54 root
Fig. 21: Implementation of outlet using connection list (1) drmr-xr-x2 root rooti096 103 12 20:41 test

1s a set of variables to implement outlet Fig. 23: Result of final implementation

7778

J. Eng. Applied Sci., 13 (19): 7772-7782, 2018

THE Is

Is AHE3HH

& Al 128

drwxr-xr-x13 root root0 118 1 09:21 sys
dr-xr-xr-x2 root root12288 109 4 13:16 sbin
drwxr-xr-x2 root root4096 9% 23 20:50 srv
drwxrwxrwt34 root root4096 119 1 03:34 tmp
drwx—-———-- 3 root root4096 10® 3 22:04 .dbus
drwxr-xr-x24 root root4096 108 3 22:00 var
drwxr-xr-x2 root root4096 10¥ 5 01:12 temp
drwxr-xr-x2 root root4096 98 23 20:50 mnt
dr-xr-xr-x175 root root0 118 1 09:21 proc
drwxr-xr-x18 root root3820 118 1 00:21 dev

Av wa v v2N want wanianas 112 1 An.01

St Al 128

dr-xr-xr-x. 30 root root 4096 2015-11-01 00:21

dr-xr-xr-x. 30 root root 4096 2015-11-01 00:21

1 root root 0 2015-11-01 00:21 .autofsck
-. 3 root root 4096 2015-10-03 22:04

dr-xr-xr-x. 2 root root 4096 2015-10-25 03:44

dr-xr-xr-x. 5 root root 1024 2015-10-03 22:02

drwxr-xr-x. 18 root root 3820 2015-11-01 00:21

drwxr-xr-x. 117 root root 12288 2015-11-01 00:55

Fig. 24: Comparision between existing 1s command and implemented 1s command

Create message Q input from user and then send to Q

Create child process

v

Implement receiver program though exe function group in child
precess

For receiver program, operate with input data from parent
process and send the result value of massage Q again

v

After checking completion of child process, parent process
retrives result value (message)

v

Output at parennt process

Fig. 25: Implementation plan

mymsgbuf {
mtype;
mtext[0];

* input_line()

* indata=(*)malloc(sizeof (

printf()i
scanf (sindata);
return indata;

Fig. 26: Input function implementation
RESULTS AND DISCUSSION

Communication using message q and shared memory
process communication using message q: Figure 26 is an
implementation plan for communication using message Q
and the operating function will be added by the start of
commumnication environment development.

Figure 27 is a detail that implements function input
data from user. Figure 28 displays the creation to deliver
message at parent process before creation of cluld
process. And the message buffer of mesg structure 1s

main()

key_t key;
msgid;
mymsgbuf mesg;
key=£tok ()i
msgid-msgget (key, IPC_CREAT|)i
Hi(nsgia==-1)
{

perror(y:
exit(1);

}

mesg.mtype=.;

strcpy (mesg.mtext,input_line()):

m(msgsnd(msgid, (*)&mesg, ©0, IPC_NOWAIT
{

perroxr()i
exit(1);

Fig. 27: Message sending impementation befor fork
function call

pid_t pid;

status;
switch(pid=fork())
{

case -1t

perror(
exit(1);
break;

¥ (execv(
{

printf(
exit(1);
}
exit(0);
break;

Fig. 28: Child process creation and program execution

default:

{
while(wait (&status) !=pid)
{continue;}

mymsgbuf inmsg;
len;

printf (

len=msgrcv(msgid, &inmsg, 10,0);
printf (,inmsg.mtext);
break;

Fig. 29: Data receiving part of parent process

designated to input return value of input function. In
Fig. 29, child process 1s created and receiver program 1s
executed and implemented.

7779

J. Eng. Applied Sci., 13 (19): 7772-7782, 2018

)

mymsgbuf inmsg;
key t key;
msgid, len;

key=ftok()i
[((msgia=msgget (key,))<0)
{
perror ()i
exit(1);
}
len=msgrcv(msgid,&inmsg,
printf(

)
,inmsg.mtext);

B (msgsnd (msgid, (*)&inmsg, ©0, IPC_NOWAIT)==-1)
{

printf(

perror ():

exit(1);

Fig. 30: Receiver program that seves reciving and
re-sending

28 YHSIM R :1+9

1+98 g UsLich
Eoo 2 HMAOA EELCt
1+9

[root@localhost MQ]# |

Fig. 31: Commumnication configuration check

mymsgbuf{
mtype;
mtext[10];

main(void)

mymsgbuf inmsg;
key_t key;
msgid,len;

key=f£tok PRy

¥ ¢ (msgid=msgget (key, 0))<)

1
perror()i
exit(l);

}

len=msgrcv (msgid, &inmsg, ", 0,0);

printf(

printf(

,inmsg.mtext);

result=EvalInfixExp(inmsg.mtext);
sprintf(inmsg.mtext, ,result);

¥ (msgsnd (msgid, (
{

*)&inmsg, © 0, IPC_NOWAIT)==-1)

printf(
perror(yi
exit(l);

Fig. 32: Receiver that adds operating function

The receiver program saves the result value in the
message again. 3o, the final value 1s to receive from
parent process. It 1s implemented that the parent process
after completing child process which 1s default,
retrieves the message that the receiver program
uploads (Fig. 30 and 31).

The receiver program receives message (parent
process message), saves it to buffer send the details of
buffer to Q agamn using msgsnd and sends to Q again. If
the above codes are all input and implemented, the result
of Fig. 32 can be obtained.

[root@localhost MQ]# ./sender
A2 2RSM R :(1+8)*9
AHAZE2 M A OlAl 4] (1+8)*9 B U SL|C}
P LkE AIFEML| O}
RO MM E3HELLCH

[root@localhost MQ]# ||

Fig. 33: Result of communication using message

| Shared memory =

Parent process

Date receiving/
operating result

Child process
v (operation)

process |
Parent process |4

Output value saved from child process

[Output parent process |

Fig. 34: Implementation plan

As in the existing requirements, calculator 1s used for
operating receiver program with stack (mnfix notation 1s
changed to postfix notation. Then, formula is calculated).
Before saving the result value i inmsg, the mnteger 1s
changed to character string to save message. Please note
that Linux does not support itea function sprintf function

prototype:

» Sprintf(char*dest, “conversion character string”,

change subject)

To solve it, use sprinf as in to serve the itoa function.
When the above processes are gone through, the result
of Fig. 33 and 34 can be obtamed. In the child process, the
operating formula from parent process is input and it is
operated. Then, it 1s sent to parent process again.

Communication implementation using shared memory:
Figure 35 is an aerial view of process communication
implementation plan using shared memory.

Use mput line (return of mput value from user)
established before with strepy function in the shared
memory and send character string before gomg to child
process. And clear memory in order to use shared memory
of chuld process.

As in Fig. 36, after checking the fimish of child
process, parent process retrieves the result value
saved in the shared memory mn the child process and

outputs it.

7780

J. Eng. Applied Sci., 13 (19): 7772-7782, 2018

+ input_line()

printf(H
* indata=(*)malloc(sizeof ()R20);

scanf (,indata);

return indata;

main ()

shmid, i;
*shmaddr, *shmaddr2;

shmid=shmget (IPC_PRIVATE,

[(shmid==-1)

{

,IPC_CREAT|)i

perror()i
exit();

}

shmaddr2=(*)shmat (shmid, (*)
printf();
strcpy(shmaddr2, input_line());
shmat ((+) shmaddr2) ;

printf()i

Fig. 35: Communication implementation using shared
memory (formula mput and send)

sleep(”);
shmaddr=(char*)shmat (shmid, (char*) 0
printf()i

printf(,shmaddr) ;
res=EvalInfixExp (shmaddr) ;

sprint# (shmaddr, ,res);

printf(
shmdt ((char*)shmaddr) ;
exit(0);

break;

Fig. 36: Communication implementation using shared
memory (formula mput and send)

[root@localhost shm]# ./shard
====Parent Process====
H&E OlMXl 23 :(3+T)*(1+9)

====Child Process====
(3+7)*(1+9) Al olza2lolM 7t SuUch

P A oM E A HE

====Parent Process====
100
[root@localhost shm]# []

Fig. 37: Implementation result

After going through the above processes, the result
of Fig. 37 can be obtained. Save formula in the shared
memory at parent process and retrieve formula in the
shared memory at child process. Then, save it m the
shared memory. Afterwards, parent process retrieves and
outputs result value. In the LS-ALR command
unplementation part the below problems can be checked:

+ Nosort 1s made based on file name
* Code complexity 1s enhanced by the use of
connection list

The code complexity can reduce the quantity of
complex cod by using CH++ STL instead of C. If using more
advanced sort algorithm the quicker result can be output

in listing and sorting multiple files. As each module is
separated, the user can modify algorithm according to
situation. A curriculum for the smart grid remote meter
reading technology course 1s being introduced mn this
study once a character string is entered by the client and
transferred to the server, it will be sent back to the client
after undergoing necessary calculation. The curriculum
includes direct implementation of Shell and command Is
operations in system programming for remote calculation
function of the smart grid, commumication and IPC
calculator compilation using message queue and shared
memory as well as implementation of a remote calculator
using the socket. A stack-oriented infix notation
calculator was brought along through the header file just
as 1t was and the resulting value will be transmitted after
1t has been transformed mnto a string. The performance of
the curriculum m the secondary and higher educations
will be evaluated in the future research.

CONCLUSION

As the smart grid 1s an intelligent power grid, the
power rate calculation 1s very important. However, there
are limited textbooks and studies in Korea. Accordingly,
this study proposed a curriculum for smart grid remote
calculation. In the smart grid remote power calculation
implementation, it can be applied to the production of
software that processes complex formula data remotely.
And it would be a good example for undergraduate
students who attempt to understand differences of
TCP/UIDP. If Q is introduced to process in sequence by
receiving input of various formulas instead of stack used
for inplementation, it can process various operations
sequentially. And if code is improved with C++, it adds
thread theory and produces results at the same time. As
the operating part is separated with function, if another
algorithm is turned to function for addition, it would add
flexibility in the efficiency for complex calculation.

ACKNOWLEDGEMENT

This research was supported by the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No.201 7R1C1B5077157).

REFERENCES

Arora, N., M. Martolia and A. Ashok, 2017. A
comparative study of the image registration process
on the multimodal medical images. Asia Pacific I.
Convergent Res. Interchange, 3: 1-17.

Aydogmus, 7. and O. Aydogmus, 2009. A web-based
remote access laboratory using SCADA. TEEE. Trans.
Edue., 52: 126-132.

7781

J. Eng. Applied Sci., 13 (19): 7772-7782, 2018

Bansal, M. and T.. Shricastava, 2017. Performance analysis
of wireless mobile adhoc network with different types
of antennas. Asia Pacific J. Convergent Res.
Interchange, 3: 33-44.

Brut, M., S. Buraga, S. Dumitriu, G. Grigoras and M.
Girdea, 2008. A competency-oriented modeling
approach for personalized E-learning systems.
Proceedings of the 2008 3rd International Conference
on Internet and Web Applications and Services, Tune
3-13, 2008, IEEE, Athens, Greece,
ISBN:978-0-7695-3163-2, pp: 410-415.

Dubey, D. and G.S. Tomar, 2017. Echelon based pose
generalization of facial images approaches. Asia Pac.
I. Convergent Res. Interchange, 3: 63-75.

Floridi, T.., 1999. Information ethics: On the philosophical
foundation of computer ethics. Ethics Inf. Technol,
1:33-52,

Gurura), A, 2016, A study on mimng user-aware
uncommon consecutive topic patterns in report
streams. Asia Pacific I. Convergent Res. Interchange,
2:17-23.

Heoeic-Bozic, N., V. Momar and L. Botick:, 2009. A blended
learning appreach to cowse design and
umplementation. IEEE. Trans. Educ., 52: 19-30.

Huh, TH. and K. Seo, 2014 Development of
competency-oriented social multimedia computer
network curriculum. J. Multimedia Inf. Syst. Korea
Multimedia Soc., 1: 113-116.

Huh, JH. and K. Seo, 2017. An indoor location-based
control system using bluetooth beacons for ToT
systems. Sens., 17: 1-22.

Huh, T.H., 8. Otgonchimeg and K. Seo, 2016. Advanced

infrastructure
experiment using intelligent agents: Focusing on the
PLC network base technology for Smart Grid system.
]. Supercomput., 72: 1862-1877.

Kickmeier-Rust, M.D. and D. Albert, 2013. Using hasse
diagrams for competence-oriented learning analytics.

metering design and test bed

Proceedings of the Intermnational Workshop on

Human-Computer Interaction and Knowledge
Discovery in Complex, Unstructured, Big Data, July
1-3, 2013, Springer, Berlin,
[SBN:978-3-642-39145-3, pp: 59-64.

Ma, J. and D. Zhou, 2000. Fuzzy set approach to the
assessment of student-centered learning. TEEE. Trans.
Educ., 43: 237-241.

Mason, G.5., T.R. Shuman and K.E. Cook, 2013.
Comparing the effectiveness

to a traditional
upper-division engineering course. IEEE. Trans.
Educ., 56: 430-435.

Ngu, HC.V. and TH. Huh, 2017. Bt-tree construction
on massive data with Hadoop. Cluster Comput.,
1:1-11.

Pullagujju, G.K., 2016. Identifying Trojan Facebook
applications. Asia Pac. T
Interchange, 2: 1-6.

Varga, A., 1999, Using the OMNeT++ discrete event
simulation system in education. TEEE. Trans. Educ.,
42:1-11.

Germany,

of an 1verted
classroom classroom in an

Convergent Res.

7782

	7772-7782 - Copy_Page_01
	7772-7782 - Copy_Page_02
	7772-7782 - Copy_Page_03
	7772-7782 - Copy_Page_04
	7772-7782 - Copy_Page_05
	7772-7782 - Copy_Page_06
	7772-7782 - Copy_Page_07
	7772-7782 - Copy_Page_08
	7772-7782 - Copy_Page_09
	7772-7782 - Copy_Page_10
	7772-7782 - Copy_Page_11

