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Abstract: The main characteristic of our representation is the use of dependent families in defining expressions
such as terms and formulas. Another point is that we do not consider parameters and show that we can do the
same thing as when parameters are mvolved. In order to confirm the feasibility of our idea we made several

experiments using the proof assistant Coq.
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INTRODUCTION

Around the tumn of the 20th century, mathematicians
and logicians were interested in a more exact investigation
into the foundation of mathematics and soon realized that
ordmary mathematical arguments can be represented in
formal axiomatic systems. A formal approach was mmtiated
by Frege (1879). He invented in Begniffsschrift (Frege,
1879) a special kind of language system where statements
can be proved as true based only upon some general
logical laws and definitions. His concern was about
applying pure logic to arithmetic judgments.

His research 1s known to be mconsistent but
addresses all the three types of concemn that can attend a
mathematical proof which are mentioned in (Avigad and
Harrison, 2014) mathematical appropriateness of methods,
correct use of appropriate methods and appropriate
understanding.

Indeed, Frege said the following “The gaplessness of
the chains of inferences contrives to bring to light each
axiom, each presupposition, hypothesis or whatever one
may want to call that on which a proof rests; and thus we
gain a basis for an assessment of the epistemological
nature of the proven law (Ebert and Rossberg, 2013)”.

A main characteristic of Frege’s approach 15 that a
rigorous and detailed proof can be given for each true
statements such that every logical inference can be
checked when necessary. This is the main factor why
people say that Frege’s work initiated an era of applying
rigorous scientific method for mathematics.

In this study, we focus on an aspect of the tradition
of applying a rigorous scientific method for mathematics,
namely formal proof and give an overview of an approach

to formally proving meta-theories of first-order predicate
logic. A formal proof 1s a proof which 1s written in an
artificial language. And in the present-day practice,
machine has become ripe enough to assist human in
writing down and proving mathematical statements. There
are various computer programs that can check and
(partially) construct proofs written in their specific
programming languages.

Ow main claim is that when the Coquand-
McKinna-Pollack style locally-named representation is
used without parameters it results in a nominal
representation. Another aspect of ow work cean be
found by Herbelin and Lee (2009).

MATERIALS AND METHODS

Motivation: In predicate logic, two sorts of variable
binding are involved:

» Binding local variables 1s used for representing
universal quantification as in v¥x P(x)

* Binding parameters is used for
parametric derivations as in A(a) - B(a)

representing

In traditional mathematical usage it 1s very common to
use the same set of variables for both sorts of variables.
However, this common practice is not so practical in a
mechanical development of a formal meta-theory. A
typical way of addressing this issue is to work with
(-COTV eTS101L,

However, dealing with g-conversion formally 15 not
so, feasible. People, however, recognized that Frege’s idea
of distinguishing between the two sorts of variables can
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be practically applied in doing machine-checlked proofs.
Coquand suggested by Coquand (1991) to use Frege’s
idea to avoid the need to reason about c-conversion.
Following his suggestion, McKinna and Pollack (1993,
1999) extensively investigated the main characteristics of
using two sorts of variables in proving the meta-theories
of lambda calculus and pure type systems.

Another solution can be given when we observe that
parameters syntactically play no essential role in Frege’s
work except when they are replaced by local variables
stating the generality of judgments. This fact can be for
mstance, observed in the left and rnight introduction rules
of universal quantification. And they are the only rules
where instantiation of a bound local variable occurs.
Indeed it is not necessary to consider instantiation of
parameters in  the of the
systerm.

This observation gives rise to a question whether we
need parameters at all when we formalize meta-theories of
a logic system. And it drove us to check whether we
could show the
when we do not mvolve parameters to the language
at all.

definition deduction

same meta-theoretic results even

Formal presentation of LJT without parameters: The
main contribution of our work is to give an answer to the
question explained in the motivation. Indeed, we have
confirmed the feasibility of wsing no parameters and
letting constants play the role of parameters in formalizing
logical meta-theory. We remark that our idea goes through
when proofs-as-programs correspondence 1s not on the
program. As our target, we took the formalization of a
Kripke-based semantical cut-elimination with respect to
LIT represented below in Fig. 1. denotes a context which
1s a finite set of sentences. The corresponding defimtion
i Coq 1s presented as follows:

From the logical point of view, what we have done is
very similar to what (Coquand, 1993, 2002) where she used
semantic normalization proof for the implicational
propositional calculus. A main difference is that the
derivability is a part of the domain of the discourse in her
work where B-like reduction on the proofs is an important
factor. In our case, although a version of the substitution
lemma 1s still necessary m order to prove the
completeness of LIT, our work does not mvolve any
mnstantiation of parameters.

Another contribution of our research 1s that we
provide a reasonable application of dependent type
programming in representing language syntax of a
predicate logic as in Fig. 2. The core of our idea lies in
the definition of terms and formulas. They are defined by
dependent families.

I''Ar C AeT
—_—  (AX ©
TTAra™ TrC )
f*.—lfB*('r_‘ -li:l"fr )
rA-8rc " ¢ TFA—B #
T|lt/zldF C, ) T+ le/z]4 where ¢ a fresh ('O'::.*'m.'r )
TlYgArC' 'L I+ Yzrd &,
Fig. 1: LIT
p - context £m
ProofCont forall (A C: fml) (Ga context
IN_ctx A G Ga ;; A C Ga C
ProofImplyR : forall B C Ga,
E Ga c Gs > C
fora B ml) Ga (a am
Ga)
(Cst
T B)
ere a & = (prove Ga A
ontext m m T
C: wf_c Ga s C s C C
v Im Ga D orall B C,
Ga B Ga C > Ga B C D
a C : forall y (u : trm) (8 : fml
u C
Ga A C r e_stoup Ga A C

Fig. 2: LIT in Coq

Terms: Let m denote a set of bound variables. Then the inductive familily term

i defined as follows

¢ Var x h € term m where » i5 a bound variable and h is a proof that + €
m

¢ (st ¢ = term m where ¢ is a constant symbal

* App ft;t. € term m where f is a function symbal and ¢, t, € term m
Formulas: Let m denote a set of bound variables. Then the inductive familily
formula m is defined as follows:
* Atom (P.t) € formula m where P is a predicate symbol and ¢ € term m
* A— B = fomuh m where 4, B = formula m.

Yrd = formula m where 2 is a bound variable and 4 < formula (x :: m.

Contexts: context is the set of dll finite sets of sentences, i.e., closed formulas

Fig. 3: Dependent type represemtation of terms and
formulas without parameters

More concretely, our idea follows the usage, common mn
the theory of lambda calculus to have a notation for the
set of terms over some set of variables. In this way, one
can give a more natural representation of, e.g., the
derivability predicate (Fig. 3 and 4). The corresponding
defimtions of term and formula families looks as
follows:

7879



J. Eng. Applied Sci., 13 (19): 7878-7883, 2018

trm et :=
| BVa name -> trm
| Cst name rm
| App : function -» trm -> trm -> trm,
atom := (predicate * trm)%type.
Inductive fml : Set :=
Atom : atom -> fml
Imply : fml -> fml -> fml
Forall : name -> fml -> fml.
Fig. 4: Terms and formulas in Coq
RESULTS AND DISCUSSION

Formal presentation of Kripke semantics: Two important
meta-theoretic properties of a logical system are its
soundness and completeness with respect to a semantics.
For that purpose, we used a Kripke style semantics for
LIT. Kripke semantics was created in the late 1950°s and
early 1960°s by Kripke (1959, 1963).

Kripke model was first introduced for modal logic
and later adapted to intuitionistic logic and other
non-classical or classical systems (Troelstra and Dalen,
1988; Ilik et af., 2010). Here, we use the conventional
Kripke model adopted by Troelstra and van Dalen (1988).

Definition (Kripke Model): A Kripke model K=(W, <, =,
D, V) is a tuple of a partially-ordered set W, a domain D
mterpretations of constant and function symbols mto the
domain and a relation between worlds, predicates and
domain elements (Fig. 5). Interpretation of terms is based
on an environment 1. The corresponding definition of
Kripke semantics looks as follows:

Algorithm; Kripke Model:
Fixpoint psem K (t: term) (eta:assocs (domain K)) {struct t}:
domain K: =
match t with
| Bvar x = y match lookup eta x with
| Someu=/ju
| None =} ests_0 (*fixed value*)
end
| Cstc=7)csts_c
| App ft1t2 =) funs f (psem k tl eta) (psemk t2 eta)
end.
Fixpoint force K (w: worlds K) (A : fiml) eta {struct A} : =
match A with
| Atom (p, t) = atoms K w (p, psem Kteta)
|B--}C =) forall W ,w {=w -}
W | |-B {[eta]}-) w' | |- C{[eta]}
|Forally B =} forall W, w{=w"-}
forall (d : domain K), w' | |-B {[(v.d) :: eta]}
end

where “w | |- A {[eta]} = ({orce_w A eta)

Kripke models: K = (W, =, =, D, V), where (W, =) is a partially ordered
set. D s the doman of K. V 15 a funcbion such that
* Vic) € D for dl constant ¢
¢ Vif) : D — D — D for all function symbd f,
* = isa relation between W and the set of predicates such that
if (w=< w and w = Pd) hods. then w' = Pd.

Here w,w € W, d € D, and P is o predicate.
Interpretation of terms: Let
bound vanables to D.

n be an environment function from the set of

= V() @y [nl.ta[n])

Nate that we assume that all function symbds denote binary functions.

Forcing: The relation = is inductively extended to all formulas:
wE (Pg] iff w e Pty
* wE (A= Byl iff foral w' = w, w' = Ay imples w' = By
s wE (YrAd)n] iff for dl d=D, w = Al((z.d)} Unl
weTiff we Alg] foral AST
Here I' is a finite set of semtence and 5 denotes an environment for bound
variables

Fig. 5: Kripke semantics

Soundness and completeness can be formalized
without any difficulty.

Theorem (Soundness): (1) Let be a set of sentences and
C a sentence. Suppose - C holds. For any Kripke
model K= (W, <, =, D, V) and any w ¢ W, if w = holds, so
does w = C. (2) Let be a set of sentences and A, C
sentences. Suppose |Ar C holds. For any Kripke model
K=(W,<,=,D,V)and any w € W, if we= and w=A
hold, so does w = C.

Formalization of completeness proof is done in the
same way as by Herbelin and Lee (2009). That 15, we use
the fact that LIT 1s complete with respect to a universal
Kripke model U defined as follows:

Definition (universal Kripke Model): A universal Kripke
Modelis U= (5, c, =, D, V) where:

s FH s the set of all contexts

s Cisthe subset relation

s D is the set of closed terms

s Vis defined as follows: V(c) = ¢ and V() (tl, t2)=ftl
t2

» =Ptiff A+ Ptholds

The following umversal completeness says that there
is a direct correspondence between semantics and
deduction.

Theorem (universal completeness): Let A be a sentence,
¥A a context and 1) an agsociation. Then, ¥A ~ [o] implies
¥A + A Now, the completeness follows.
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Theorem (completeness): Lot A be a sentence and ¥A a
context. If for any Kripke model K = (W, <, =, V)
and any w € W, w = A follows from w = ¥A  then we have
¥A LA

Locally-named vs. nominal: This section explains another
contribution of our work. We claim that when the
Coquand-McKinna-Pollack style locally-named
representation is used without parameters it results in a
nominal representation. In order to support our claim, we
only need change the interpretation of the dependent
families term m and formula m.

Until now, we have used the locally-named
representation without parameters. That is, we have used
only local variables. Moreover, we have let constants play
the role of parameters. The main reason why this worked
15 that the proofs-as-programs correspondence i1s not
mvolved.

However,
formalization, we notice that the local variables used in an
expression are divided into two classes:

when we look back at the whole

¢ Variables that are really bound by a quantification
and

¢ variables that are not bound by any quantification
and controlled by a trace.

Moreover, unbound variables behave like parameters
in the conventional style of using one sort of variables
although, their role 1s took over by constants.

In summary it looks like as if we used one sort of
variables which are usually called bound or free
depending on their locations in an expression. We just
gave no role to free variables and let constants play their
role instead. This is the reason why we find the following
new interpretation plausible:

* Term m denotes the family of terms with possible
occurrences of parameters from the fimite set m

* Formmula m denotes the family of formulas with
possible occurrences of parameters from the fimte set
m

* Temm @ denotes the family of closed terms, 1.e., no
occurrences of parameters

¢ Formula © denotes the family of sentences, i.e.,
closed formulas

The rest of our work copes well with this new
interpretation without changing anything in the
formalization. Only the meaning of some notations
changes among which:

¢ Only closed terms can be substituted

¢ The inference rules are defined only for sentences

»  The domam of the universal model consists of closed
terms

We emphasize again that this new interpretation
works since the role of parameters can be taken over by
constants. That 13 when one is interested in
formalization of a logical metatheory but not directly in
the proofs-as-programs correspondence, then one could
work with a nominal representation style as we propose in
thus study.

In order to check the plausibility of our proposal, we
did another formalization of the same contents. This time
style of locally-named
representation without using traces. We tried also two
versions, one with parameters and the other without

we followed the wusual

parameters. Except some differences made by the absence
of traces, the formalization for both versions works almost
the same as in the cases with traces. There are nothing
special to be mentioned extra except that we confirmed
once more that locally-named representation approach
suitts well m spite of variable binding and that
locally-named representation can become nominal in the
same way as we demonstrated in this study.

Practical formal meta-theory: The elements of a trace are
not per se relevant which 1s reflected by the fact that trace
relocation has no impact on substitution and Kripke
semantics. The only important thing is their occurrence in
the trace which 1s tracked by proofs of list membership.
This allows names and de Bruyn indices to be
superimposed. Indeed their relationship can be observed
when we look at the use of de Bruyn indices in McBride
and McKinna’s typechecker example:

¢ The de Bruijn index 0 corresponds to a proof that 0 €
{xtum

»  The de Bruyn successor S on indices corresponds to
the proof that x € mimpliesx €y :: m

Another point about using traces is that one can
nicely work with syntax for mstance well-formedness and
provability. However, it requires a good support of
dependently typed programming. In case of coq, working
with dependent types is sometimes heavy-going. And
this 18 one reason why the sumultaneous substitution 1s
defined as a kind of partial function. More detail about
why it becomes arduous when we define it in a more
dependently typed programming style is explained in a
technical report. We have not tested yet but it could work
smoothly with other tools such as Agda.
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In order to check the plausibility of our ideas
mtroduced in this study, we took several targets to
formalize in Cog Here, we give summary of our
experience. A detailed explanation with many technical
issues is given in the above mentioned technical
report.

First, the formalization with traces: In this study, we
mtroduced only the version without parameters because
our main concern was to check the role of parameters
when the proofs-as-programs cormrespondence 1s not
involved. The version with parameters has nothing
special to mention. The language there contains
parameters but they play no more role than that of
constants as explained in this study.

Second, Coquand-McKinna-Pollack’s locally-named
representation style: we took the same target as mn the first
case but this time used the Coquand-McKinna-Pollack’s
locally-named representation style. There are also two
versions, one with parameters and the other without
parameters. The two versions are all easier to handle
because no dependent types involved.

Third, the soundness of the Church-style
simply-typed lambda calculus: This is the case where we
tested our idea of using simultaneous substitution and
simultaneous renaming. We took Leroy’s contribution to
the POPLmark challenge and slimed it down to handle the
simply-typed lambda calculus, still using the locally
nameless representation. The main changes we made are
as follows. First, simultaneous substitution instead of
single substitution: we checked that simultaneous
substitution works well also with de Bruijn indices.
Second, simultaneous renaming mstead of variable
swapping in order to handle weakening and renaming: we
wanted to check the utility of simultaneous renaming in
dealmg with weakening and renaming when the
conventional style of quantification 1s used that 1s the
quantification style requiring one fresh instantiation. We
could show that simultaneous renaming works well when
some injectivity condition is imposed. An interesting
point 1s that byjectivity 1s not required as assumed by
McKinna and Pollack (1999).

CONCLUSION

We used the proof assistant Coq (2) as the
programming tool for formalization. The proof assistant
Coq provides all the functionalities we need in order to
realize our ideas: intentional type theory, dependent types
inductive families and simultaneous substitution. We did
also several experiments with other representation styles
in order to check the utility and feasibility of our ideas
among which simultaneous substitution, simultaneous

renaming, cquantification style, comparison between

simultaneous renaming and swapping variables. There are
several 1ssues to be discussed about what we have
accomplished Lee et al. (2016).
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