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Abstract: A long term deflection response of reinforced concrete flexural members is influenced by many factors
like compression remnforcement, creep coefficient, shrinkage strain, total time of experiment (years) and the
ultimate compressive strength. A statistical approach artificial neural network for the predicting of long term
deflection of reinforced concrete beams or slabs is proposed in this study. The artificial neural network
predicted approach from this study was compared with (ACI-318) code equation. Results of artificial neural
network was discussed and compared with the experimental data obtained from conducted studies. It showed
a good agreement. However, the predicted approach was found to be too simplified to assess the increment of

the long-term deflection.
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INTRODUCTION

Reinforced concrete beams or slabs should be
designed to compensate strength, deflections and
cracking at different loading conditions (serviceability
requirements). Numerous experimental mvestigations on
long term deflection have been made, since, 1907 until
now. The authoritative investigation which contains
obvious information about the dimensions of the beam or
slab, reinforcement details, the 1mtial deflection, the total
time of experiment, the total deflection, the ultimate
compressive strength and the compression reinforcement.
Espion (1988),
variability of researched depend on the method submitted

documented and reconsidered the

by ACI-318 to evaluate the long term deflection of simply
supported beams. Hspion (1988), documented almost the
published research data, 1907-1988 which
concerned or study experimentally long term deflection.
Espion (1988) covered 45 different researches and the
kept research was 29 different researches which give

since,

clearly the dimensions of the beam or slab, reinforcement
details, the mitial deflection, the total time of experiment
and the last recorded deflection at the end of experiment.
For the present study 28 researches accredited, the
strength for all the 28
researches ranging between 9.9 and 457 Mpa, the

ultimate compressive

duration of experiments renging between 88-3123 days
while the compression reinforcement p” ranging between
0-0.016696. Paulson, ef al. (1991) studied the influence of
the ultmate compressive strength and compression
reinforcement p” on the creep coefficient and deflection.

The experiment carried out on 9 simply supported beams
for a duration of 360 days. The ultimate compressive
strength ranged between 37-90 MPa while the
compression reinforcement p’ ranged between 0-0.014998.
Lieping et al. (2011), conducted a study to mvestigate
experimentally beams reinforced with glass fiber and steel
bars. The experiment carried out on 2 simply supported
beams reinforced with steel bar for 360 days. The values
of creep coefficient, shrinkage strain and the ratio
between mitial and time-dependent deflection were
presented. The ultimate compressive strength  of
concrete is 56 MPa while p° is 0. Gudonis ef al.
studied short and long-term deflection for duration of 315
days for four reinforced concrete beams whereas the
ultimate compressive strength for concrete 1s 33.5 MPa
while p” is zero. Al-Numan (2007), proposed an analytical
sample to calculate the long-term deflection for different
types of remforced concrete slabs. Muhaisin (2012)
proposed an analytical model to calculate the long term
deflection for remnforced concrete beams. This study
included the effect of many factors such as compressive
strength, compression reinforcement, dimensions of beam
and span length. Shallal (2013), studied experimentally and
theoretically the long term deflection of existing reinforced
concrete beam. Proposing a model take mto account the
effects of construction loads, effects of cracking on the
long-term deflection.

Most of the previous researches used the code
equation for the determination of long term deflection,
hence there 15 a lack in the literatire for evaluating
absolute theoretical equation to evaluate the influential
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factors in long term deflection like dimensions of
beams or slabs, creep coefficient, shrinkage strain,
reinforcement details, the mmtial deflection, the total time
of experiment, the total deflection, the compressive
strength and the compression reinforcement. Analytical
equation developed in this study using the advance
statistics neural network to evaluate the long term
deflection of the flexural members mfluenced via. different
parameters which are mentioned above.

The main objective of this research 1s to present a
systematic approach to assess the benefit of Artificial
Neural Networks (ANNs) for the calculation of long-term
deflection in reinforced concrete beams or slabs. The
following parameters are included in the proposed
approach: compression reinforcement, creep coefficient,
shrinkage strain, total time of experiment (days) and the
ultimate compressive strength. Then the proposed
approach is compared with the experimental data which
found in Literature as well as with the ACI Code equation
to check the accuracy.

MATERIALS AND METHODS

Deflection control: Relatively slender members become
commonly used due to the quality outline technique,
together with the utilization of higher-quality cements and
steels. As a conclusion, deflections have become severe
problems recently. To avoid the overestimation of
deflection in beams and slabs which may lead to damage
the structure appearance, sagging slabs, poor fitting of
doors and windows. One of the best methods to dunimsh
redirections is by expanding part profundities. Reinforced
concrete related mternational codes usually confine
redirections by determimng certain base profimdities or
maximum allowable processed avoidances.

In the ACI Code Table 9a, outlines the mmimum
required thicknesses for beams and one-way slabs,
unless genuine redirection estimations alludes that the
mimmum thicknesses are permitted. The value of mimmum
thickness have been created based on experience of
experts over decays, these values should be used only for
shafts and segments which were unsupported or
assoclated with parcels or different individuals prone to
be harmed by diversions. Similar mammer has adopted in
ACT Code for the two-ways slabs throughout Table S¢
and provision 9. If the onginator picks not to meet the
base thicknesses given in tables, the deflections must be
calculated and the qualities decided may not surpass the
qualities determined in Table 9b of the ACT Code. The
diversion of RC individuals might likewise control by

curvature. The individuals are worked in this shape to the
point which they will acknowledge their hypothetical
shape under some orgamzation stacking condition.

The prediction of the moment of inertia which will be
computed after cracking take place no matter how the
deflection have been computed, it will be difficult due to
the cracks amount and shape, McCormac and Russell
(2014). The beam section have been assumed uncracked,
when the cracking moment, M, is larger than the moment
subjected to beam segment, so, the gross moment of
inertia I assumed to be equal to the moment of inertia. At
the point when the moment is more noteworthy than M,
the tractable splits that create will bring about the pillar
segment to be lessened and the moment of inertia might
be expected to square with the changed esteem, I,
cracking moment of inertia. Tt is genuine that at areas
where pressure breaks are precisely found, the first
moment of area near the changed T, however, in the
middle of splits, it is might be closer to I,. In addition,
slanting strain splits may exist in zone of high shear,
bringing on different varieties. Thus, it is hard to choose
what estimation of moment of inertia should be used. It 1s
easy to say that an accurate strategy for registering
diversions must take these variations inte account, Leet
(1997). The ACT Code (9.5.2.3) area characterizes the
moment of inertia expression which will conduct for
evasion estimations. Such value gives a transitional
incentive amongst I, and I, that depends on the level of
splitting brought on by connected burdens. The effective
moment of inertia alluded to as Branson and Metz (1963)
which 1s depend on the assessment of the likely measure
of cracking created by the varying moment all through the
traverse.

Adequate I, with the suitable deflection term,
immediate or beginning avoidances are gotten. L.ong-term
or sustammed loads be that as it may, cause huge
increments in these deflections on account of shrinkage
and creep. The variables influencing deflection increments
incorporate moistness, temperature, healing conditions,
compression reinforcement, proportion of stress to
strength and the concrete age at the time of stacking. On
the off chance that solid is stacked during early age, its
long haul redirections will be fundamentally extended.
Intemperate avoidances in strengthened solid structures
can all the time be taken after to the early usage of
burdens. After around 5 vyears the creep strain (the
creep effect is irrelevant) the initial strain may be raised to
four to 5 times when subjected to imtial load which
usually connected after 7-10 days of the setting of
concrete, if the initial loading take place after 3 or 4
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Fig. 1: Graphing component of Neufram V.4 program and structure of the ANNs optimal model (D-1)

months of concrete placement the ratio will be very little.
The ACI Code (9.5.2.5) states that to evaluate the
development in redirection in view of these causes, the
piece of the incite avoidance that is a result of supported
burdens may be increased by the exactly inferred
Fig. 1 A, Branson (1971) (as showed up in Eq. 1 which is
ACI Eq. 9-11) and the result added to the immediate
diversion:

- (1)
1+50p"

In this condition which is considerable to use for
both customary and lightweight cement, £ is a period
subordinate component that may be found from code
arrangement 9.5.2.5. The effect of pressure steel on long
haul diversions is considered in this condition with the
term p”. The full dead load of a structure can be named as
a supported load, however, the kind of inhabitance will
choose the rate of live load that can be called maintained.
A review by the ACI Code demonstrates that for the
controlled research office environments, 90% from the test
cases had avoidances something close to 20% below and

30% over the qualities figured by the technique portrayed
above, ACI Committee 435 (1972). Regardless that field
conditions don’t recreate the lab environments and
redirections in genuine structures will change extensively
more than those incident in the lab examples. In aversion
of using arrangements and details and field examination,
it is troublesome to control hands on work sufficiently.
Generally, advancement staff may increase the water
content for concrete to produce more workability.
Typically, development staff might add some water to the
solid for more workability together with the happen of
voids and honeycomb. Eventually, the structures
probably cleared from molds before the full maturation of
concrete. Assuming this is the case, the modulus of burst
and flexibility will underneath and extraordinary parts may
occur in columns that would not have happened if the
solid had been more grounded. These components can
realize strengthened solid structures to avoid apparently
more than is shown by the typical calculations.

ANN Model variables: The purpose of research estimation
is to predict or estimate the long term deflection from
known or assumed values of other variables related to it.
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The data collection method used in this study based on
the direct data gathering from 32 published papers which
contain 201 experiment results. The model input variables
are consisting of five objective variables (1.e., p’, €, creep
coefficient, time “years” and fc") which might affect the
estimation of long term deflection the output variables are
Asor and Ag,. The selection of input variables for the
model which had significant effect on the model efficiency
is an important step in developing ANN Models.
Introducing as substantial various info factors as
conceivable to ANN Models for the most part expands
organize estimate, bringing about a diminishing in
handling speed and a decrease in the productivity of the
system, Shahin, (2003).

The 5 parameters had the extreme considerable effect
on the deflection and therefore used as the ANN Model
inputs.

The following stage to improve the models of ANN
1s the division of the obtained data to them subsets,
traiming, testing and validation sets. Trail-and-error
process was used to choose the optimum allocation by
using Neuframe, (Version 4) software program that is easy
to use, transparent and customary to many practitioners
n construction (Fig. 1).

Scaling of data: At the beginning the selected data
should be separated to their subsets, the pre-processing
of mput and output variables by scaling them to exclude
their dimension and to assure equal solicitude for all
variables throughout training. The scaling in the hidden
and output layers 1s required to proportional to the
limitation of the transfer functions (1.e., -1.0-1.0 for tanh
transfer function and 0.0-1.0 for sigmoid transfer
function). For scaling the neural networks, the simple
linear mapping of the variables was adopted for the
extremes used for scaling because 1t’s the most commonly
used method, Shahin (2003). The scaled wvalue X,
calculated according to Eq. 2 which is a function of this
system each variable X had a mimmum and maximum
values of X, and X .. respectively (Eq. 2):

B e @)
Xmax - Xmm
RESULTS AND DISCUSSION
Model architecture, optimization and stopping

criteria: The determination of model architecture task
had a great mmportance and difficulty for development
of ANN Models (1e., the hidden layer node’s number
and connectivity). The best network which performs
with respect to the lowest testing error followed by

Table 1: Effect of data division on performance of ANNs
Data division

Coefficient
Training Testing  comelation
Training (%) Testing (%0) Querying (%) error (%) error (%0) (1) (%0)

80 15 5 11 10.3 73.5
70 10 20 104 07.9 65

68 12 20 09.9 11.3 64.4
66 14 20 10.3 10.5 65.6
63 15 20 1.2 10.5 64.1
63 20 15 10.9 12.1 68.8
60 20 20 10.6 104 64.6
60 25 15 10.6 11.5 70.3
60 30 10 10.8 10.9 65.1
55 30 15 10.6 10.5 68.4
55 25 20 10.1 11.1 66.1
55 20 25 09.5 11 52.5
50 30 20 11 11.6 64.4

*The highlighted cells represented the chosen division of data that effect on
the performance of ANNs

traimning error and high correlation coefficient of validation
set was retrained with different combinations of
momentum terms, learning rates and transfer functions to
develop the model rendering. Consequently, the ANN
Model that has the optimum momentum term, learming rate
and transfer function was retrained several times with
different 1mtial weights until no additional amelioration
occurred, Alzwainy (2015) which was shown through
Table 1-6.

The optimum network of the selected model is set to
one hidden layer with learning rate equals to 0.2 and
momentum term equals to 0.8 and the sigmoid transfer
function was utilized for luidden and output layers whose
include the lowest training error of 11.1% and testing error
of 7.2% with the highest correlation coefficient of 96.6%,
hence, it 1s used in this research.

Artificial neural network model formula: The small
number of association weights acquired by Neuframe for
the ideal ANNs Model empowers the network to be
converted into moderately basic formula. To exhibit this,
the the ANNs Model structure is appeared in Fig. 1 while
as assoclation weights and threshold levels (bias) are
likewise outlined in Table 7.

Utilizing the connection weights and the threshold
levels illustrated in Table 7, the predication of long-term
deflection could be expressed as follows Eq. 3:

1 3
Mg = et 075258832tk ) &)

Where, Eq. 4:

~ B, H{ W, X V) H{w,, % V, )+ “@
b (W, x V(W x V) H{w, < V)

Before using Eq. 3 and 4, a step should be done, all the
input variables (i.e., V), should be scaled between 0.0
and 1.0 using Eq. 2 according to Table 8 were the data
ranges in the ANN Model training shown.
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Table 2: Effects of method division on ANNs performance
Data division (%)

Training Testing Querying Choices of division Training error (%) Testing error (20) Coefficient correlation (1) (%0)
80 15 5 Striped 11 10.3 73.5
80 15 5 Blocked 9 11.6 16.8
80 15 5 Random 11.1 07.2 96.6

Table 3: Effects no. of nodes on ANNgs performance

Moadel no. No. of nodes Training error (%) Testing error (%) Coefficient correlation () (%)  Parameters effect

1 1 11.1 07.2 96600 choices of division

2 2 10.8 10.4 71.400 (Random)

3 3 11.1 09.2 75.400 Learning rate

4 4 10 12.5 77.500 0.2)

5 5 10.5 10.1 78.209 Momentum term

6 6 11.3 11.1 63.800 0.8)

7 7 10.8 09.6 80.500 Transfer fimction inhidden layer
8 8 10.3 10.7 69.400 (Sigmoid)

9 9 10.7 09.5 69.500 Transfer function in output layer
10 10 11.7 10 86.900 (Sigmoid)

11 11 11.4 14.6 54.500 -

12 12 10.3 08.3 59.600 -

13 13 09.9 12.4 65.100 -

*The highlighted cells represented the chosen division of data that effect on the performance of ANNs

Table 4: Effects momentium term on ANNs performance (Model 1)

Momentun Term Training error (%6) Testing error (%6) Coefficient correlation (r) (%0) Parameters effect

0.01 10.3 13.1 67.4 Model no.(1)

0.05 11.7 10.2 72 Choices of division

0.1 11 11.8 72.9 (Random)

0.2 10.7 10.1 67.7 Learning rate

0.3 11.1 12.3 66.2 0.2

0.4 1 11.7 66.7 No. of nodes

0.5 11 11.1 68.5 (D

0.55 11.1 10.4 68.2 Transfer function in hidden layer
0.6 10.6 11 54.4 (Sigmoid)

0.7 10.7 09 65 Transfer function in output layer
0.8 1.1 072 96.6 (Sigmoid)

0.9 10 10.7 75.2 -

0.95 10.7 11.4 064.2 -

*The highlighted cells represented the chosen division of data that effect on the performance of ANNs

Table 5:Effects learning rate on ANNs performance (Model 1)

Parameters effect Learning rate Training error (%) Testing error (%o Coefficient correlation () (%)
0.02 10.3 12.5 70.9 Model No.(1)

0.05 10 14 77.1 Choices of division

0.1 10.6 10.6 65.3 (Randormn)

0.15 10.5 10.8 80.7 Momentum term

02 11.1 7.2 96.6 0.8

0.3 121 8.9 59.7 No. of nodes

04 10.3 11.1 54.7 (0

0.5 11.7 9 66.5 Transfer function in hidden layer
0.55 11.6 10 59.4 (Sigmoid)

0.6 12.5 10.2 67.1 Transfer fimction in output layer
0.7 10.8 12.2 63 (Sigmoid)

0.8 11.2 10.3 68 -

*The highlighted cells represented the chosen division of data that effect on the performance of ANNs

Table 6: Effects of transfer function on ANNs performance (Model 1)
Transfer function

Hidden layer Output laver Training error (%) Testing error (%61 Coefficient correlation () (¢o)Parameters effect

Sigmoid Sigmoid 11.1 7.2 96.6 Moadel no.(1)

Sigmoid Tanh 11.6 9.6 75 Choices of division (Randoim)

Tanh Sigmoid 11 7.1 70.9 No. of nodes (1)

Tanh Tanh 12.4 10.5 50.5 Momentum term (0.8), Learning rate (0.2)

*The highlighted cells represented the chosen division of data that effect on the performance of ANNs
It should also be noted that the predicted value of  of long-term deflection. It has to be re-scaled using

long-term deflection obtained from Eq. 4 and 5 is scaled  Eq. 2 and the data from Table 8. The procedure for
between 0.0 and 1.0 and in order to obtain the actual value scaling and substituting the values of the weights and
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Table 7: Weights and threshold levels for the ANNs optimal model (Model 1)

wj (weight from node i in the input layer to node j in the hidden layer)

Hidden layer nodes i=1 i=2 i=3 i=4 i=35 Hidden layer threshold ©;
i=6 1.27735 -0.85767 -0.393090 -4.2911 1.91919 -1.05576

wj (weight from node i in the hidden layer to node j in the output layer)
Output layer nodes i=6 - - Output layer threshold 6,
i=7 -5.8932 - - 0.75156
Table 8: Input and output statistics for the ANNs (Model 1)
Parameters p (%) 3 Creep coefficient Time year fo" KN/m? Output
Max 1.666253 0.00019 1.7 5.069 346 2681529
Min 0 0.00016 1.4 0.4722 18.8 0.491163
Rang 1.666253 0.00003 0.3 4.597 15.8 2.187365

threshold levels 1s shown in Table 7. The predicted of
long-term deflection can be expressed as follows (Eq. 5):

2.187365
(-0.752+5 89 tanhx, ) +0.494163 (5)

Ky =
1+e

ANN

And Eq. &
X, = 0.77p'- 2.866+1.31cc — 0.933t+0.121fc' +3.511 (6)

Validity of the ANN Model: The statistical measures used
to understand the performance of the optimum ANN
Models:

Mean Absolute Percentage Error (MAPE) Eq. 7:

MAPE = {i% 100%}/11 N

1=1
Where:
A = Experimental value
E = Predicted value
n = Number of trails

Average Accuracy percentage (AA %)
AA% =100% — MAPE &)

¢ The Coefficient of Correlation (R)
¢ The Coefficient of Determination (R*)

The coefficient of determination standardizes how
well the model outputs qualified the objective esteem. The
MAPE and percentage RMSE are control of the average
error.

The statistical values of checking the ANN Model
validity are given in Table 9. (i.e., the MAPE and average
accuracy percentage created by ANN Model were
observed to be 3 and 97%, respectively). In this way, it
can be presumed that ANN demonstrates a good
agreement with the real measurements.

Table 9: Results of the comparative study

Description ANN for Model 1 (¢9)
MAPE 2.43

AA % 97.5

R 96.6

R? 93.36

Table 10: Error categorization (%), Schexnaydr and May o (2003)
MAPE

Good Fair Poor
<25 25-50 =50
2.5
2_
51.51
=3
§
l -
0.5
0 T T T T T 1
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Variables

Fig. 2: Comparison of predicted and observed deflections
for validation data

Numerous trails were performed to produce the
statistical values as illustrated in Table 9 while the error
categorization was set up to conceptual estimate.
Schexnayder and Mayo (2003) proposed the error of
estimation was approximately between £25%. According
to thus study, MAPE of Model 1 was good 3%.

To assess the accuracy of the ANNs Model for
predicting the long term deflection. Predicted values of
long-term deflection are plotted against measured values
as llustrated in Fig. 2 and summarized in Table 10 and 11.
It 18 clear from Fig. 2 that the coefficient of determination
(R*) is 9336%, so, ANNs Model indicates great
concurence with the experimental results.
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Table 11: Results of the comparative study

Tnput data Output data

o' (%) Shrinkage *0.001 mm/im (&) Creep coefficient Time years fc! MPa ACT (L) Exp. (1) ANN equation (1)

0 0.00019 1.7 5.06944444 28.8 2.00 2.19 2.678155

1.666253 0.00019 1.7 2.575 20.3 0.94 0.99 0.507534

0 0.00016 1.4 4.95277778 19.8 1.99 2.68 2.627994

0 0.00016 1.4 0.81944444 34.6 1.33 0.80 0.506729

0 0.00016 1.4 0.81944444 34.6 1.33 0.49 0.506729

0 0.00016 1.4 1.55833333 30 1.56 1.33 0.506791

1.241935 0.00016 1.4 2.22222222 32 1.03 0.76 0.506745

0 0.00019 1.7 5.06944444 188 2.00 2.26 2.673041

1.428217 0.00019 1.7 0.47222222 34.1 0.69 0.62 0.506724
CONCLUSION Branson, D.E., 1971. Compression steel effect on long-

In this research, ANN technique used for the
prediction of long term deflection of reinforced concrete
flexural members. A multilayer feed-forward neural
network with back-propagation algorithm was applied.
The results show that ANN Model 1s able to learn the
cause-effect relationships between mput and output,
during the training stage, the proposed model is capable
of predicting with reasonable accuracy the long-term
deflection of flexural members in compare with the
experimental data. Obtammed average accuracy percentage
18 97.5% and the coefficient of correlation is 96.6%.

This model takes into consideration the influence of
compression reinforcement, creep coefficient, shrinkage
strain, total time of experiment and the ultimate
compressive strength.

The agreement between the proposed model of long
term deflection and the ACI (2011) 15 good with coefficient
of correlation of 86.6%.
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