Tournal of Engineering and Applied Sciences 14 (19): 7077-7083, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

An Optimized Runge-Kutta Method for the Numerical Solution of the
Oscillatory Problems

'Firas A. Fawzi, 'A M. Gaftan, *P.E. Oguntunde and °N. Senu
'Department of Mathematics, Faculty of Computer Science and Mathematics,
Tikrit University, Tikrit, Trag
“Department of Mathematics, Covenant University, Ota, Nigeria
*Department of Mathematics and Institute for Mathematical Research,
Universiti Putra Malaysia {UPM) 43400 Serdang, Selangor, Malaysia, firasadilO1{@gmail.com

Abstract: Tn this study, an optimized explicit Runge-Kutta (RK) method which is based on a method of Dormand
with six-stage and fifth algebraic order with FSAL property denoted as the ORKS5 method 1s constructed. The
proposed method solves first-order Ordinary Differential Equations (ODEs) by first converting the second order
ODEs to an equivalent first order. The new method has zero phase-lag, zero amplification error and zero first
derivative of the phase-lag. Absolute stability of the new method is as well shown. The numerical experiments
are carried out to show the efficiency of the derived method in comparison with other existing RK methods.
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INTRODUCTION

In this study, we are dealing with the Initial Value
Problems (TVPs) of the form:

y{x) =£(xy). v(x,) = Yo (1)

Where:
¥(x)=[y,(x). v, (%), o v, ()T

fy) =[£,(3). £, (5 - (% v} ]

v, 18 a given vector of initial conditions and their solution
is oscillatory. This type of problem occurs in various
applied fields such as quantum mechanics, electromics,
physical chemistry, molecular dynamics astronomy,
chemical physics and control engineering.

In effect, Eq. 1 can be solved using Runge-Kutta
methods or multi-step methods. The solution of Eq. 1
often shows a pronounced oscillatory behavior. In
general, most problems with oscillatory or periodical
behavior are a second order or higher order. Hence, it is
unportant to reduce the higher order problems to
first-order problems in order to solve the ODEs in Eq. 1.
Several researchers have improved numerical methods for
solving oscillatory problems based on the phase-fitted

and amplification fitted properties. Simos and Aguiar
(2001) constructed a modified phase-fitted RK method
with phase-lag of order infinity for the numerical solution
of periodic TVPs based on the fifth algebraic-order RK
method of Dormand and Prince.

Chen et al. (2012) improved traditional RK methods
by introducing frequency-depending weights in the
update. With the phase-fitting and amplification-fitting
conditions and algebraic order conditions, new practical
RK integrators are obtained and two of the new
methods have updates that are also phase-fitted and
amplification-fitted. With the evolution of RK
methods, Papadopoulos et al. (2010) developed a new
Runge-Kutta Nystrom (RKN) method for the numerical
solution of the Schrodinger equation with phase-lag and
amplification emror of order infimity based on the
fourth-order RKN method by Dormand, El-Mikkawy and
Prince. Meanwhile, Moo et ai. (2013) derived two new
RKN methods for solving second-order differential
equations with oscillatory solutions based on two
existing RKN methods, a fourth-order three-stage Garcias
RKN method and fifth-order four-stage Hairers RKN
method.

The derived methods both have two variable
coefficients with zero amplification error (zero dissipative)
and phase-lag of order infnity. In the last few years,
Senu et al. (2014) constructed zero dissipative explicit RK
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method for solving second-order ODEs with periodical
solutions which have algebraic order three with the
dissipation of order infimty. Fawzi ef al. (2016a, b)
developed fourth-algebraic-order phase-fitted and
amplification-fitted modified RK method and fourth-order
seven-stage phase-fitted and amplification-fitted RK
methods, respectively. Hussain ef al. (2016) proposed a
new optimized RK method for solving oscillatory
problems. Recently, Ahmad et al. (2017) constructed a
phase-fitted and amplification-fitted two-derivative RK
method of high algebraic order for the numerical solution
of first-order Imitial Value Problems (IVPs) which
possesses oscillatory solutions.

In this research, the new technique will be
constructed by combining the nullification of phase-lag
amplification factor and phase-lags derivative, based on
a method of Dormand with six-stage and fifth algebraic
order (Butcher and Wanner, 1996).

MATERIALS AND METHODS

Phase lag analysis of Runge-Kutta method: We consider
the m-stage explicit RK method of the form:

Vou = v thY bk, 2

i=1
i
k = f{anrclh, yn+h2auk1}i =1 ..m (3)
=1

The method is said to be explicit when a; = O for i<
and implicit otherwise. The method in Eq. 2 and 3 can be
reduced into Butcher tableau form (Fig. 1).

To derive the new method based on phase lag
analysis, we consider the following test equation based
on Moo et al. (2013):

y' =Wy “4)

where, v is real. Then, we compare the theoretical solution
and the numerical solution for this equation. By requiring
that the solutions are in phase with a maximal order in the
step-size h, we derive the so-called dispersion relation.
Applying the above method in Eq. 2 and 3 to the
test Eq. 4, we obtam:
Ya =Yy

with:

a, = A, (H*)+iHB, H’ (5)

where, H = vh. The amplification factor 1s, a. = a.(H) and
denotes the approximation to y(x,). A comparison of

0

C2 a1

Cm
Am1 Am, am-1
by bm

Fig. 1: m-stage explicit Runge-Kutta method

Eq. 5 with the solution of Eq. 4 leads to the following
defimition of the dispersion or phase error or phase-lag
and the amplification error.

Definition 2.1: An explicit m-stage RK, presented in
Fig. 1 the quantities:

t(H) = H-arg[ a. (H) | ©)
a(H)=1-|a.(H)|

are called the dispersion or phase error or phase-lag and
the amplification error, respectively. If t(H) = O(H™") and
a(H) = O(H"") then the method is said to be phase-lag
order r and dissipative orders (Fawzi ef al, 2016a, b).
From Eq. 6, it follows that:

o =1-[al (e ()] O

Meanwhile, for the Runge-Kutta method given in
Fig. 1, the following formula is used for the direct
calculation of the phase-lag order r and the phase-lag
constant ¢:

tmﬂH)H{imgig1_qH”H{mH”ﬂ ()

The analysis of phase-fitted (dispersion of order
wnfimity) and amplification-fitted (dissipation of order
infinity) are based on dispersion and dissipation
quantities that have discussed above. The RK method 1s
phase-fitted and amplification-fitted, if the following
conditions hold:

t(H)=0and a(H)=0 %)
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Table 1: Runge-Kutta method of order five

i
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RESULTS AND DISCUSSION

Construction of the new Runge-Kutta methods: Tn this
study, an optimized Runge-Kutta method will be
derived, based on the fifth-order Runge-Kutta method
with six-stage derived by Butcher and Wanner (1996)
which is given in the tableau in Table 1. To achieve this,
we set b, b, and b; as free coefficients while all other
coefficients are the same as in Table 1, first, we compute
the polynomials A’, and B, in terms of Runge-Kutta
coefficients in Table 1. Then from these polynomials, we
obtain the quantities t(H) and a(H) and by the
nullification of the phase-lag amplification error and
phase-lag’s derivative. Hence, we obtain a system of
three equations as follows:

77#4 z
a(H)—{l 600H +QH J+

2
H’ LH“+PH2+b3+bl+ 63479 +b, | —1=0
120 142464

t{(H)=tan{H)-H LH“JrPHZerjerlJr 63479 +b,
120 142464

PR IS R
[1—€;h +§£h,+Qh } =0
(10)
t'{H) =1+ tan(H) | ~

65479
+b2
142464

1
——H*+PH*+b, +b,+
120

-1
-ty Lo | —nl L opn
600 24 30

-1
1——1—Hﬁ+_]'—H“+QH2 +
24

600
ST +PH?+b, +b, + 63479 +b, (11)
120 142464
—2
1 1 1 1
——H+-H+20H || 1-—H'+—H"'+QH*
00 & 600 24
where:
_ 163 9
1113 200 °
and:
3 1 271
Q :_*ba _7b2 T

10 5 742

Solving simultaneously the system of Hq. 10-12, we
obtain the coefficients b, b, and b; which are completely
dependent on H where, H 15 the product of the step-size
h and the frequency v. The expressions for b, b, and b,
are too complicated, hence, we replaced by their Taylor
series expansion and obtammed the following expressions:

:£+ 643 H'+
384 45360
50184187 T

9340531200

62677 1o, 5933 L,
16329600 4435200
2560520257 s
11769069312000
601 . 1831 L, 26041
15120 217728 798330 12)
308333 ., 83804419 ..
249080832 156920024160
500, 29 . 451 2171
1113 1134 81648 997920
A0A13 Ly 20951107 o,
467026560 58845346560

1

b, =

o e

HE+

b,

oo

Stability of the new method: Here, the linear stability of
the method developed is analyzed. Consider to the test
Eq. 4 where v>0, the exact solution of this equation with
initial value y(x,) = y, satisfies:

y{x,+th)=R({H)y, (13)

When applying Eq. 2-4:
Your =R(H)y, (14
R(H)=1+Hb"(I-HA) e (15)

where, e = (1, ., )", A =[g;] and b" = [b,, by, b,, ..., b_].
R(H) 1s called the stability function of the method m Eq. 3.
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Definition 3.1: A Runge-Kutta method is said to be
absolutely stable if YHe(-h, 0), |R(H™)<1 (Fawzi et al., 4 =
2016a, b). The stability polynomial of the ORKS5 method 1s
given as follows:

1 1

(H):1+H+1H2+—H3+—H“+LH5+ -
2 6 24 120 X
LH% >3 H - 1 He+ 007 H+
7200 25200 40320 1814400
1 o 39073 1 "
H'+ H - H+ ici p
3628800 199584000 479001600 (16) [} Cofficient of order 107] . =
& [“Cofficient of order 6”] 4
2462483 s, 1 s = [“Original method']
[

31135104000 87178291200
0164119691 s, 11547559819 .,

57164050944000 266765571072000
11547559819 .

1778437140480000

“Cofficient of order 3"]

Fig. 2: Stability region of ORK 5 method for different order

YHe(-3.3, O)R(H)|<1. We, however, obtained the result
using maple package. Figure 2 shows the stability region

. . ) of ORKS5 method for different order.
The comparison of the stability region of the ORKS

method up to H where, I = 8, 10, 12 and its original method
15 plotted in Fig. 2. The stability mterval of the
original method 1s -306567892 and the stability nterval
of this method with the coefficients of H*, H', H" is
-3.306570336. Observing from the stability regions plotted
m Fig. 2, our new method 15 absolutely stable, since,

Error analysis: The Local Truncation Error (L TE) of the
new method is based on the Taylor series expansion of
the differences v,., and y(x,+h):

LTE =y, +y(x,+h) (17)

1 2417 21361 1517
LTE=h°"| —w'[,f+ '+ + 3}
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J 1 ., 1252708019
43200 77

el L e 4 102427
3600 *

From Eq. 18, it is clear that the order of the new
method 1s five because all the terms of h lower than
h*® are vanished.

Tested problems and numerical results: Tn this study, the
performance of the proposed method ORKS 1s compared
with existing RK methods by considering the following
problems. All problems below are tested using C code for
solving differential equations where the solutions are
periodic:

ORKS5: An optimized fifth-order RK method derived in
this study.

MODRKSPLDPLAM: The phase-fitted six-stage
fifth-order RK method derived by Ming et al. (2012).

MODPHARKSS: The modified phase-fitted fifth-order RK
method given in Simos and Aguiar (2001 a, b).

PHRKS54: The higher order method of the phase-fitted
embedded RK5(4) proposed by Van de Vyver (2006).

RK-Fehlbergsth: An optimized fifth-order RK method
derived by Kosti et al. (2010).

Problem 1: Homogeneous problem, Chawla and Rao
(19835):

y(x)=1
Y2(X) =-Z

Y1 =Y
y, =64y,

Theoretical solution:

vi(x)= —isin(Sx)+cos(8x)
¥, (%) =—2cos{8x) —8sin{8x)

Problem 2: Tn homogeneous problem, Van der Houwen
and Sommeijer (1987):

Y1 =%

v (x)=1

v, = 7V2y1+(vz fl)sin(x)
y,(x)=v+

512577331200 7 7 °
L2587
54950400 77 3392

75379

73097 }+
50371200 7=

6105600 (18)

Oofﬁéwg}+o(hj

Estimated frequency: v =10.
Theoretical solution:

v, (%) = cos{vx)+sin (vx)+sin{x)

y,(x) = —vsin{vx)+vcos(vx)+cos(x)

Problem 3: Almost periodic orbit problem (Stiefel and
Bettis, 1969):

Y1 =¥ Y1(X) =1

y; =y, t0.001cos(x}), y,(x)=0

Y= ¥ yz(x):o

¥y =y, t0.001sin(x), y,(x)=0.9995

Theoretical solution:

v, (x) =cos(x)+0.0005x sin(x)

Problem 4: Inhomogeneous system (Franco, 2006):

Yi =¥ Y1(X):1

y, =—13y,+12y, +9cos(2x ) — 12sin{ 2x),
yj(x) =—4

Y3 = ¥e Y2(X):O

v, =12y, —13y, —12c0s(2x)+9sin{2x),
y,(x)=8

Estimated frequency: v =5
Theoretical solution:

y,(x)=sin(x) —sin(5x)+cos(2x)
v, (x) =sin{x)+sin(5x)+sin (2x)
¥,(x) = cos(x) —5cos(5x ) - 2sin(2x)
Y (X) = cos(x) +5cos(5x) +2cos(2x)

Problem 5: Tnhomogeneous system, Salih et al. (2015):
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-o- ORKS5
- MODRKS5PLDPLAM

0 1 -2 MODPHARKS5S
—A— PHRKS54
2 —— BK-Fehlbreg5th

T T
5.0 52 54 5.8 6.0 6.2
log,, (function evaluations)

Fig. 3: Comparison for ORK5, MODRKSPLDPLAM,
MODPHARKSS, PHRK 54 and RK-Fehlberg 5th
problem 1 with b = 10000

0 A

2 4

log,, (MAXERR)
&

-8 ] - ORK5
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-10 | -= MODPHARKS5S

—4— PHRKS54

-12 | % BK-Fehlbreg5th

T T T 1
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log,, (function evaluations)

Fig. 4: Comparison for ORKS5, MODRKSPLDPLAM,
MODPHARKSS, PHRK54 and RK-Fehlberg 5th
problem 2 with b = 10000

Y =Ys Yi(x)=0

. _-101 99 93 9
Y, :_2 y1+7y2+7cos(2x)- ?S'n(zx)v
Y3(X) =-10
yl3 :y41 yZ(X) =1

.99 101 93 . 99
Y4 :7)/1' 7y2+73m(2)()_ ECOS(ZX)’
ys(x) =12

Estimated frequency: v =10
Theoretical solution:

(x) =—cos({10x) —sin{10x)+cos(2x)

(x) = cos(10x ) +sin(10x)+cos(2x)
¥,(x) =10sin(10x ) —10cos({10x ) - 2sin(2x)

( ):—10sin(IOX)HOcos(lOX)+2cos(2x)

-~ ORKS
—— MODRKSPLDPLAM
- MODPHARKSS

-4 PHRKS54

— BK-Fchlbreg5th
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b
o

Fig. 5. Comparison for ORKS5, MODRKSPLDPLAM,
MODPHARKS5S, PHRK 54 and RK-Fehlberg 5th
problem 3 with b= 10000
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Fig. 6: Comparison for ORKS, MODRKSPLDPLAM,
MODPHARKSS, PHRK 54 and RK-Fehlberg 5th
problem 4 with b = 10000

N

-~ ORKS5
—— MODRKSPLDPLAM
-8 | = MODPHARKS5S
—A- PHRK54
—— BK-Fehlbreg5th
_10 T T T T T 1
5.0 5.2 5.4 5.6 5.8 6.0 6.2

log,, (function evaluations)

log,, (MAXERR)
N

Fig. 7. Comparison for ORKS5, MODRKSPLDPLAM,
MODPHARKSS, PHRK 54 and RK-Fehlberg 5th
problem 5 with b = 10000

Figure 3-7 show the various comparisons between
ORKS5, MODRKSPLDPLAM, MODPHARKSS, PHRK 54
and RK-Fehlberg5th problems 1-5, respectively with
b = 10000,
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CONCLUSION

In this study, a six-stage fifth-order RK method
denoted as ORKS5 for solving first-order ODEs by first
converting the second order ODEs to an equivalent first
order with phase-lag and amplification error of order
infinity and the first derivative of phase-lag is of order
mfinity 1s developed. The comparison i1s made with other
well-known existing explicit RK methods that have same
algebraic order which are found in Van der Houwen and
Sommeijer (1987), Ming ef al. (2012), Simos and Aguiar
(2001a, b) and Van de Vyver (2006). In the numerical
comparisons, we used the criteria based on computing the
maximum error in the solution [Max error = max (|y(t,-y,)D]
which is equal to the maximum between absolute errors of
the true solutions and the computed solutions. Figure 3-7
show the efficiency curves of Logl0 (max error) against
the computational effort measured by LoglO (function
evaluations) required by each method and we observed
that the new ORKS method is more efficient for
integration first-order differential equations possessing an
oscillatory selution compared with other methods which
are MODRKSPLDPLAM, MODPHARKSS, PHRKS54 and
RK-Fehlberg 5th.
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