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Abstract: We study an evasion differential game of one evader against one pursuer in the plane R* with
coordinate-wise integral constraints on the control functions of players. The game is described by some
differential equations in terms of each coordmate. The evader moves within a small neighborhood of a vertical
1-axis, either by moving vertically or maneuvering. The evader maneuvers to the right, if the pursuer 1s on its
left side and vice versa. We say that evasion is possible, if the position of the evader does not coincide with
that of the pursuer at all times. We obtain a sufficient condition of evasion and construct an explicit strategy
for the evader to ensure evasion. The strategies depend on the imitial positions of players and a defined
approached distance between the pursuer and the evader. Each strategy 1s shown to be admissible by using
the fact that the integral constraints are coordinate-wise. By these strategies, evasion is proved to be possible

from any initial position of players.
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INTRODUCTION

Problems of differential game uvsually mvolve
constructing optimal strategies for players and finding the
condition for the objective of the game to be completed.
The game involves two opposite parties of players called
pursuer and evader whose control functions are usually
subjected to the geometric or integral constraints. The
evasion differential game 1s a game in which evader is to
avold bemg captured by pursuer indefinitely or in a
certain time interval.

Among many researches that were devoted to
evasion game was by Tbragimov et al. (2012a, b). The
researchers studied an evasion differential game of one
pursuer and one evader with integral constraints,
described by the following equation:

z = A(D)z+B(t)(v-u), z(0) = z,

where, z, 1, veR", z,cRYM for M is a given closed convex
subset of R", A(t) and B(t) are continuous n=n matrices
and u, v are control parameters of the players. The control
functions u(t) and wv(t) are subjected to imtegral
constraints. Despite the control resource of pursuer is

greater than that of evader, a strategy for evader was
constructed to avoid the state of the system to reach
the terminal set M.

Differential evasion game with integral constraints on
control functions of players could also be studied in the
case of many pusuers and one evader. This type of
problem was considered by Ibragimov ef al. (2012a, b) in
which the trajectory of players were described by the
following equations:

P:x =nu, x,(0) =%,

Eiy=v, v(0) =y, X, #¥,1=1,..,m

and the control functions of players are subjected to the
followmng conditions:

(I:l u,(s) st)% <p, (j;| v(s) st)lz <G

By assuming that the total resource of the pursuers
does not exceed that of the evader, explicit strategy for
evader was constructed to obtain the solution of evasion
problem in R". The evasion game of many pursuers and
one evader of integral constraint were further studied by
Thragimov and Salleh (2012) but in the case where the total
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resources of the pursuers are strictly greater than that of
the evader. The game occurs in the plane R’ and despite
the pursuers have advantage in total resources it was
shown that evasion 1s possible from some mitial positions
where the strategy constructed for the evader is based on
controls of the pursuers with lag.

Ibragimov et al. (2015) continued to investigate an
evasion problem of many pursuers against one evader but
the space of the game 1s the Hilbert space ¥,. The payoff
functional which is the greatest lower bound of distances
between the pursuers and evader was considered. The
control functions of all players are subjected to mntegral
constraints. It 1s assumed that the duration of game 1s
fixed and any pursuer’s energy is not necessarily greater
than the evader’s energy. Optimal strategy for the evader
was constructed for the evader to maximize the payoff
functional.

Another space for an evasion differential game of
many pursuers and one evader to occur 18 manifolds with
Euclidean metric. This space was considered in the study
by Kuchkarov et af. (2016). The motions of all players are
simple and players have equal maximal speeds. A method
to reduce this game to an equivalent game in R® was
proposed and a necessary and sufficient condition of
evasion was obtained.

In the evasion differential game of one evader agamnst
many pursuers studied by Tbhragimov et al. (2017), the
control set of the evader 1s restricted to a sector S of
radius «, a>1. The trajectories of players are in R* and
described by simple differential equation. The sufficient
conditions of evasion from any mitial positions of players
were obtained where the maximum speeds of pursuers are
set to be 1 which is less than «.

In the present study, we consider an evasion
differential game of one evader from one pursuer with
mtegral constramnts on control functions of players.
However, we look at the situation where the constraint is
coordinate-wise. Evasion occurs in the (g, 1) plane in R’
where the evader moves within a small neighbourhood of
radius € from a vertical 1-axis. A strategy for evader that
guarantees evasion from any initial positions of players is
constructed.

MATERIALS AND METHODS

Statement of problem: We consider an evasion
differential game of one pursuer P and one evader E in the
plane K* with coordinate-wise integral constraints on
controls of players. The game is described by the
following differential equations:

% =u, x(0)=x, (1)
Ky =ug, x5(0)=xy
S"] =¥y yl(O) =¥

(2)
S"z = Vg, yZ(O):yZU

where, x = (X, %4 ¥ = (V1. ¥2)» % = Kip, Xands ¥ = Vo> Yoo
Xg# ¥, U = (u, W) is control parameter of

pursuer, v = (v, v,) is that of evader.

Definition 2.1: A measurable function u(t) = (u,, (t), u,(t)),
t20 is called an admissible control of the pursuer if:

7 ui(s)ds <p?, [; ui(s)ds <p? @)
where, p, and p, are given positive numbers.

Definition 2.2: A measurable function v(t) = (v,(t), v,(t)),
t=0 is called an admissible control of the evader v if:

=visds <07, [7vis)ds <62 (4)

where, 0, and 0, are given positive mumbers.

Definition 2.3: Afunction V{t, y, x, u), V: (0, oo)x
R*>>R*<R*-R’ is called strategy of evader, if for any
admissible control of the pursuer, the following initial
value problem:

x=ult), x(0) =x,

y = V(t:- Y: X: u(t))a Y(O) = YD

has a unique absolutely continuous solution (x(t), y(t)),
t20 and along this solution, the following inequalities
hold:

[= V2 (s, yis), x(s), u(s)ds < o
7 ViGs, yis), x(s), u(s)ds <G

Definition 2.4: We say that evasion 1s possible from the
initial positions %, and v, in the game (Eq. 1-4), if there
exists a strategy V of the evader such that for any
admissible control of the pursuer, x(t) # y(t). In the current
research, we construct a strategy for the evader and find
conditions for parameters p,, p,, 0, and 0, that guarantee
evasion in game (Eq. 1-4) for any initial positions of
players.
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RESULTS AND DISCUSSION
Without loss of generality, we assume t; = 0.
Theorem 3.1: If 0,>p, and 0,>p,, then evasion is possible.
Proof: Clearly, the inequalities o>p, and o,>p, imply
that o = ¢’ +o’>p’,+p’, = p’. Consider two cases:
V0% OF V<X, Let be any nmumber satisfying O<a<imin
{1, [Xoyal}-
Case 1: y,;>x,, (Fig. 1).

Construction of a strategy for the evader: Define a
strategy for the evader as follows:

), t20 )

vty = (0, [u, (1)
Admissibility of the strategy: Simply:

_[:vf(s)ds —0<0?

j:vj(s)ds :j;\ u [ ds<pl <ot
Hence, strategy (Eq. 5) is admissible.

Proof of evasion is possible: Since, y,,>x,,, we have:

y,(t) = yzu+-[é v, (s)ds = yZqu-[E |u2 (S)|dS>quJr

" ‘uz(s)| ds = %, + [t u, (s)ds = x, (1)
Thus, y(t)#x(t) for t>0 and hence, evasion is possible.
Case 2: y,,<x,, (Fig. 2).

Construction of a strategy for the evader: Define a
strategy for the evader as follows. Let:

vt = (0, fu, (1)) if y,(t) <x,(t) and [y(t)-x(t)| > a
(6)
At t=0 by the defimtion of a, |y,-xg[>a. If y,<x,, then at t
= 0, the evader starts to use Eq. 6. Now, let t, be the first
time when x,(t,) = vy, (t,), [y(t)-x(t)|2a. Then the strategy
of the evader 1s as follows:

Vi) = (0, o+fu, () t, St <t +a o
(0, [u, (), t >t +ox

where, « is a number that satisfies the following
conditions:

ox,

Fig. 1: Positions of players where
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Fig. 2: Positions of players where y,(t,) = x,(t,)
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Fig. 3: Positions of players where, y,(T)<3,(T)

O<a<lan<c, aa<o§,miq-pl,x/ﬁiﬁz-pz
(8)
In particular, if vy,, = x;,, then,t, = 0 and hence,
each evader applies strategy (6) on (0, «). Note that the
time t, may not occur. In this case, clearly evasion 1s
possible. Let now the second inequality in Eq. 6 fails
to hold first time at some t = © that is |[y(1)-x{(1)| = a but for
O<t=t, [y(t)-x(O>a and x,(t)>y,(t)as illustrated n Fig. 3.
Then, we set:
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v, is of negative | y® y(t)?';‘ is of positive
value - value
o) O) Vi©)

——- Evader moves to the right side when x, (T)< y,(1)
—— Evader moves to the left side when x,(t)>y,(1)

Fig. 4: Strategy of players

ot (), etiu, (), TEE< T,

vit) =

(0, o+, (D)), T <t ST+, &)
[0

©, | u, (O], t>T+
[0 4

Moreover, + in Eq. 9 means:

V() = { aHu, (B, X, (T < y,(T) 10
_((1+|111(t)‘)’ X (T) > Y, (T)

that is if the position of the pursuer is on the left side of
the evader then the evader will maneuver to the right side
to avoid from the pursuer and vice versa (Fig. 4).

Admissibility of the strategy: We now show admissibility
of the strategy of the evader. For strategies, Eq. 6 and 7 it
is clear that:

[[vitus=0<a}
Now, for strategy, Eq. 6:
[[visds = [uy(s) 2ds < p? < o

If time t, occurs, then by Eq. 7 and the fifth inequality
m Eq. 8, we have:
[7eids = [uy ) P ldst [ (ot ju, () dst

iy +

[T ua® s = [* T oldse 20 uy ) | ds
_l:ol u, () * ds< e’ +2p, o’ +p) € a+2p Ao+

pl = (Wou+p,) < (W2o+p,) < o}

We conclude that the strategy is admissible. For
strategy Eq. 9 by the 4th mequality m Eq. 8, we get:

o 2 _ T l 2
[T vl sds = [Tods o [T fu () s o
el =
I, a0d5+j, 2 0ds € a0 T2p ~Jao+
T T
o

p? <a+2p,ou+p? = (Wo+p,)? <

(N20+p,)* < o]

Also by the fifth inequality m Eq. 8, we have:

[vitds = [T Jus() P ds+ " (ot [uys) ) ds+

(773 @y @Didst[ ", 0,0 [ ds < 20

2p,v2actp} < 20042p 4 2atpl = (V2o tp,)? < o
The proof is thus, completed.

Proof of evasion is possible: While the evader applies
Eq. 6, 1t 18 clear that y(t)=x (1), since, [y(t)-x(t)|=a=0. If time
t, occurs then y(t)#x(t), txt,. Indeed, since, |y(t)-x
(t)]za>0, we have y (t,)#x(t,). For t>t,, we have y,(t)>x,(t)
which implies y (t)#x (t) where the proof is similar to
that of case 1. Let time T occurs. Then the evader uses
strategy Eq. 9. We estimate the distance between players
as follows. For time t€[T, T'];

|y = |(y(rrFvisids)-(x(or [ ugs)ds) =
[y(1)x(1)

[ vis)yds- [ u(d)ds‘ > |y(T)x(T)]-

J.trv(s)ds‘—
Uzu(s)ds\ >a-[f |v(s)|ds- | u(s)|ds = a-oaftt-
pJﬁ > a—ZG\/‘;

On the other hand, without loss of generality by
assuming x,(t)<y,(t) by Eq. 10, we have:

Y0P (0%, = (v, 0w, 65) 5, 0+ u s >
|30, (D) + ot ()ds-

fou, (s)ds|>
| v 2,@) |+ sty (9)u, () ds >
[\ ads = o t-T)
Now, let z ) =a-2o4tt and z,(t) = a(t-t) for te[t-1"].

As t progress from T to T, we have O<t-T<a/c
which implies azz(tza2ova/a that is z(t) decreases

7135



J. Eng. Applied Sci., 14 (19): 7132-7137, 2019

z(t)

P

z(® ¢
" Cd

—-———

Fig. 5: Function

continuously from a to a-2ea/c on [T, T°]. On the other
hand, the inequality 9=t+=2¢ jmplies O<z(t)<a that is
z,(t) mereases continuously from Oto aon [, T']. Hence,
the function z(t) has a unique minimum point on [T, T']
at some t = t when z(t) = z,(t) (Fig. 5). By a straight
forward calculation, we can see that;

2
a
t, = TH———oxu—€ [T, T']
(o+fo? +aa )
Thus:
a(\loz +a0t-0) o da’a
z,(t)> > o> ;>0
G 1/%+1) G’ (J%H 20
And:
2 2 2
z,(t) > aa o= a o >;125102t>0
(o] olPan)
So that:
da’a ,
|y (0)-x(t) |2 max{z, (1), Z,(£)} > Py 0, te [T, ]
In particular:

e 2% 50
TY-x(t" [=
Y 250"

Hence, v (t")#x (t"). Now:

¥ (Trx, (1) = (YZ (T)J'_J-: AP’ (S)ds)'
(xz(r)+ﬁ'u2(s)ds) =(y,(Trx, (D)) +
[% {ovtu, (s)ds )-7 u, (s)ds 2 v, (0)-

X, (0 [T ads 2 -atafT-T) = 0

Thus, v, (t")>x, (t"). This means that the position of
the pursuer cannot be above the horizontal line K = y,(t")
in the plane R* at t = 1", Hence:

0,0 =y, @)L v, 6)ds -
(5@, =(v, @)+
[1 (ot o) ) ds-J% u,(s)ds 2y, (T, (T)+

I ods > o(t-T) >0

Therefore, y(t)#x(t) for te(t’, t'+a/a). In particular:

y{r'+a}x2[r'+a}>0 (1D
o o

Using Eq. 11 for te(t'+a/a, «), we have:

yﬂnxxnx[{+aj%(f+aj+
o o

[rzvatoas [} sz =
e Vo [, auteds =
3 o

y{mi}x{mi}r L u,(s)ds-
o o T

[ auz(s)ds>y2[r'+aj—xz[r'+aj>0
el o o

Hence, y(t)#x(t) for te(t'+ale, ). We conclude that,
y(t)#x (t), t=0 and proof is completed.

CONCLUSION

The contribution of the present research is a study of
an evasion differential game of one evader from one
pursuer with coordinate-wise integral constraints on
control functions of the players. The sufficient conditions
for evasion 1s possible are 0,>p, and 0,>p, and with the
constructed strategy it 1s shown that evasion 1s possible
from every possible location of imtial position of
players.
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