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Computerized Representation of Noncircular Gear Centrodes and
Teeth Generation using Double Circular Arc Profile
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Abstract: This study covers the method of representation of any pitch curve (centrode shape) in noncircular
gears by deriving a general mathematical equation contains a number of parameters such that this equation can
give any centrode shape depending on the selected values of these parameters. In addition, a tooth of double
circular arc profile has been generated by hob method and distributed over the pitch curve of noncircular gear
by using the required equations of tooth profile generation. These equations are applicable for any module and
pressure angle and give the required double circular are tooth form. Equations of pitch curve representation
and tooth profile generation have been programmed using SOLIDWORK program. Therefore, when the
parameters of pitch curve and tooth profile have been changed, the program will generate the required shape
of noncircular gear centrode and the tooth form which can be distributed over the pitch curve. The resulting
noncircular gear can be manufactured by CNC machine by coupling SOLIDWORK program file of the generated
noncircular gear with this machine. Also, static and dynamic analysis of these gears can be achieved using
SOLIDWORK package or using any other program accept SOLIDWORK files such as ANSYS package.

Key words: Noncircular gears, computerized representation of gears, centrodes of noncircular gear, gears,
gears generation, pitch curve representation

INTRODUCTION

Non-circular gears have a number of important
applications in several fields such as that m artificial heart,
pressing machine, gear pump, mechanism of linkage for
velocity or displacement function. Study the behavior of
noncircular gear drive under working conditions needs to
represent the gear shape accurately with different gear
design parameters. This enables to analyze the behavior
of noncircular gears using any theoretical or experimental
test method Thus, it 18 1important to cover the
mathematical relations of noncircular gear centrodes and
teeth generation to represent the noncircular gear in 3D
space. By Cunningham (1959) presented a design method
for variable radius (non-circular) gears that can be used as
a function generator. By Kuczewski (1988) introduced
a method to determine the centrode pitch cwve in
non-circular gears of elliptical type. By Danieli (2000)
suggested a method to find the teeth profile in
non-circular gears of constant pressure angle. By this
method, non-circular gears of special shapes can be
generated by using milling machine that is controlled
numerically. By Bair (2002) mtroduced a mathematical
model to represent the noncircular gear of elliptic type

that has a rotational axis coincides with the ellipse
geometrical center. Shaper cutter has been used to
manufacture this gear. Mundo and Danieli (2004)
proposed a new method for noncircular gear design. The
main idea of the proposed method is to represent the
meshing progress of non-circular gears by using
appropriate mathematical modelling that leads to derive a
suitable differential equation which can be solved by
numerical integration and generate the required
non-circular gear (Mundo and Danieli, 2004). 1i et al.
(2007) developed a numerical method to generate tooth
profile of non-circular gear with accurate flank. This
method allows to replace classical tooth generation
method by direct tooth representation method (L1 et af.,
2007). Litvin et al. (2007) introduced three methods to
generate elliptical gears by hob, rack-cutter and shaper
with full description and mathematical representation of
generation process (Litvin et al, 2007). Riaza et al. (2007)
employed non-parametric curves of B-spline and Bezier
to represent variable radius gears with N-lobe by
propose a suitable method to revolve angular coordinates
of pinion and gear using these non-parametric curves. As
the displacement law 1s formulated, pitch curves of pinion
and gear can be created analytically (Riaza ef al., 2007). By
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Liu and Chen (2008) derived the equation of pitch curve
in non-circular gear using Fourier series by substituting
the speed ratio as a Fourier series. Consequently, angular
displacement equation can be evaluated by itegration
method. Marius and Laurentia (2010) made a literature
survey of non-circular gear generation methods based on
simulation of generation, theory of enveloping and
analytical approximation of tooth profile. Vasie and Andrei
(2011) adopted a general method to design centrode
shape of variable radius gear using super formula of
Gieli which contains a number of design parameters
(Marius and Laurentia, 2010). Han et al. (2015) proposed
a method to generate the profiles of noncircular gear
teeth and derive the required mathematical equations
by applying slotting cutter (Han et «l, 2015).
Vanegas-Useche et al. (2016) developed a new variable
radius gear with minimized shaft acceleration. The
centrode shape of this gear i1s depend on maximum
acceleraion required and centrode smoothness
(Vanegas-Useche et al, 2016). Zhang and Fan (2018)
suggested a new mathematical model of variable radius
gear with small rotational inertia. The formulation of this
model 18 based on kinematic and calculus principles
(Zhang and Fan, 2018). Zheng et al. (2018) introduced a
new approach for generation of variable radius gears by
a face milling that used in generation process of
spiral-bevel gear (Zheng et al., 2018).

The review above shows the important and difficulty
of mnoncircular gear generation and representation.
Therefore, this study will cover teeth generation method
and pitch curve representation in noncircular gears

using different mathematical relations and coordinate
transformations.

MATERIALS AND METHODS

Derivation of noncircular gear centrodes: The first and
the most important step in the design of noncircular gears
1s to dernive the centrodes of these gears i this case, we
apply the following:

+  Suppose two movable coordinate systems S,(x,, v,)
and S, (x,,y,) which are rigidly connected to gear 1
and pinion 2, respectively.

*  Consider a fixed coordinate system S{x; y;) which are
rigidly comnected to the gear drive frame as shown mn
Fig. 1.

While the rotation process of noncircular gears
continues, the instantaneous center of rotation (T) moves
along center distance C. Thus, the traced out path by the
mstantaneous center of rotation mn 3; coordinate system
can be represented by the straight line r{u) where, v=1.

#

01,07 Lo
~ A

Fig. 1: Noncircular gear centrode of fixed coordinate
system S{x; yp and movable coordnate systems
Si(Xp ¥ Sy(xs, y2)

Inthe same time, the instantaneous center of rotation
(I) moves along centrodes 0, and o, of gears 1 and 2 in
the coordinate systems S, and 8, Thus, the
centrodes can be determined from the path traced out
by point (I} as 1, and r; in coordinate systems 3, and 3,
(Litvin et af., 2009):

n(u,d) =M, (D)1 (u) (1)
n{u@,) = M, (F,)r(u) (2)

where, M{j = 1, 2) represent the matrices of coordinate
transformation from 3;to S,. o, and @, are the rotational
angles of gears centrodes. Now, to derive the noncircular
gear centrode consider the following cases of the
derivation (Litvin and Tu, 1997):

Case 1: When the derivative function m,(2,) = de,/de,
and the center distance of the gear drive (C) are given:
first, take in to account that:

_do, 5 _Con (3)
a2,

m12(®1)

Therefore, the following expression for centrode o,
can be obtained:
C

T 1m,(2,) “

{2}

While the expression for centrode 0, is determined as:
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{2 5
1+m,, ()
@ dJ
2,(2) =] —1= —)

The function m,,(2,) must be a dlfferentiable and
positive function. The requirement of positive values of
my,(2,) in the area can be observed easily
because the gears rozﬁgtlo mgy be achieved m one
direction only as a corfime one.

L(2,)=C

Case 2: When the function v(x) is given such that
X, <X <X,. In this case, the rotational angles of the driving
and driven gears are proportional to x and y(x),
respectively. Thus, the following expressions for the
scalar coefficients k, and k, are obtained:

(6)
@, =k (xx)
2, =k, (y(x}-y(x,))
The gear ratio is determined as:
(7
_do, _ K
()46, "y

It should be observed that the derivative m,,(x)
function must be a positive function n the range x, <x<x,.
Condition of closed centrodes: The conditions for
obtaining closed curves centrodes are formulated as the
following for each driving and driven gear separately.

Centrode 0;: Recall that this centrode 1s 1,(0)), (6, = 2,) 1s
represented by Eq. 4. From this equation, it is clear that
driving centrode 0, can be obtained as a closed form
curve, if the derivative function m,(2,) 1s a periodic
function with period T = T,/n, where, T, 1s the period of
revolution for gear 1 and i, 18 an integer number.

Centrode 0,: This centrode 1s obtained by Eq. 5 for r,{e))
and 2,(»,) which form a closed curve, if the function
m,,(&,) is a periodic function with period T = T/n, as in
centrode o,. This is mean that the interval of variation of
2, during one revolution is a multiple of 21/n,. Finally, the
following conditions must be applicable: the ratio between
revolutions of centrodes o, and o,(n, and n,) is:

(8)

Fig.:

where n, and n, are integer numbers. The center distance
between gear drives must be determined as a function of
n, and n, as following. Represent r,(2,) by the following
Eq. ©:

. D= (D) o)

The angle of rotation og‘ pinion (@ ) 18

(10)
7. @ = Qlﬂd@

2 1 1
0 Cqr

Finally, from Eq. 8 and 10, we obtain
for center distance:

e following Eq. 11

(11)
2, _in _ J‘ IZTT ()
n, 7 C-{¥
Design of noncircular gear drive with lobes: The term
“lobe” refers to gear that has several parts. For example,
Fig. 2 shows noncircular gear with three lobes. Here, the

design of noncircular gears with lobes is based on the

ded

1

application of conjugated centrodes. Noncircular gear
centrode equations are derived by using the following
generalized Eq. 12:

(12)
a(l-ez)

1-e cosm,

P
@& = =
f ( ! ) 1-e cosm, ¢,
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Fig. 3: Noncircular gears centrodes with lobes: a) n =
1,m=1,2,3, bbn=2m=12andc)n=3,m=1,.2

(13)

r,(2,)=C-1{2,) (14)

taan@Z _ 1+(1-ez)(n2-1)+etanm1@1 (15
2 n{l-e) 2

where, m;, and m, are lobes number for gear 1 and 2,
respectively and n = m,/m, 1s the ratio of revolution
mumbers of gears 2 and 1. Figure 3 illustrates some

examples of noncircular gear centrodes with different
lobes.

Generation of non-circular gears by grinding worm: This
method of generation, also, known as a hob is useful from

Rack cutter

Worm

| _Zr
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t
/
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Se Ye
If
O £ %)
xC
O\
Z; =

Fig. 4: Generation by hob: a) Position of worm on rack
cutter and b) Used coordinate systems

the view point of improving productivity and reliability of
gears generated. The surface of the worm thread X, is in
imagmary meshing with surface of rack-cutter tooth. This
meshing condition allows to determine the worm-thread
surface. The procedure 1s as following: Litvin ef al. (2009).
Shafts of worm and gear are at crossing angle v, which
is given as (Fig. 4, taking the helix angle P, = O for spur
gear):

i
Vg = 5_7\‘ (16)

w

where, 4, is the lead angle of the worm. Consider fixed
coordinate systems S, and S; are define the motion of
worm and rack cutter tooth surfaces, respectively. While
the movable coordmate system S, and S, are rigidly
comnected to surfaces X, and X, respectively as shown
in Fig. 4b.

Rack-cutter tooth surface %, performs the following
motions: translational motion S, along the straight line
O#C in coordinate systems S, as shown in Fig. 4b. This
line makes angle v, with xaxis. Rotational motion about
z, axis at an angle \r,, that 1s:
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Y, =—¢ (17)

where, p,, 18 the grinding worm pitch radius. Surface of the
worm thread X, can be determined by both vector
equation of suface X, and meshing equation as
following:

L, (U Lo we ) = My (Wi )5 (u,, 1) (18)
a o) ar

SR TR T (AL N S T

e (v 1w [auc alc] v,

where, 1, 1s the generalized meshing parameter and M,
is the coordinate transformation matrix from S, to S,.
Equation 18 and 19 give the worm thread surface X... that
we will refer to it R, (u,, 1, I} worm thread surface X, 1s
used to derive the elliptical gear surface %, considering
the following (Fig. 5). Consider a fixed coordinate system

S; for defining the motions of the coordinate systems S,
and 3, that are rigidly connected to the gear tooth and
worm thread surfaces.

Worm thread surface X, performs two motions:
translational motion (S,,) parallel to gear axis in z; axis and
rotational motion at an angle ¢, about 7z, axis. Knowing
that S, coordinate system is translated with coordinate
system S, Translation and rotation of the worm and the
gear are accompanied together such that the gear
translation is along y; axis and defined by position "
while its rotation about z, axis at an angle 1r,. Thus:

y(ful)(e) = —r(6)sinu (20)
,(6) = e+u-g (1)

We tend to determine the following function:
g(6,.5,.6)=0 (22)

To determine the worm-thread surface in coordinate
system S, coordinate transformation from S, to S, is used
as following:

n(u, L, w,, 0,.8,)=M_(b,.8, )R (u,.l,w,)
(23)
where M, 1s the matrix of coordinate transformation from
S, to 8. Since, M, is a function of two independent
parameters (¢, and S.), the generation is a double
enveloping process. The matrix M, 1s:

le(‘bw’ Sw) = le((bw’ Sw)Mfs(Sw)MSW((bW) (24)

cosy, siny, O -y siny,
(9,.8, )= -siny, cosy, O 'y(fnl ) cos Y (25)
0 0 1 0
0 0 0 1
cosy,, O -siny, 0
0 1 0
Mq(8,)= P 29)
siny,, 0 cosy, S5,
0 0 0 1
cos¢_ -sing, O O
sing, cos¢, O O (27)
Msw (q)w ) =
0 0 10
0 0 01
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Fig. 6: Determination of function g{¢,, s,, 6)=0

Since, the generation of surface X, 18 a process of
double enveloping, there are two meshing equations:

fl(WI)(uc, 1:, ww, q)w, Sw) 0 (28)

fz(wl)(uc, lc,ww, q)w,sw) =0 (29)

Surface X, can be determined by simultaneous
consideration of Egs. 23, 28 and 29. Function g(¢,,
S, 8) =0 can be derived as following (Fig. 6) Consider an
umaginary rack cutter in simultaneous meshing with the
worm and gear surfaces. Coordinate systems S;and S, are
coincident at the initial position. And the surfaces X, 2,
and 2. have a common tangent line t-t at position t,.

The common tangent line t-t will move to position t,
due to both translational motion S, and rotational motion
¢,, of the worm. The system S will move by x*%, The
translational motion S, cause a displacement of A x
defined by position t, and t,. While rotational motion ¢,
cause a displacement of A x; defined by position t, and
t,. The total displacement is the sum of these two
displacements:

AP A el c0)

lag)
fl

-Ax) = O;8 = tanfiS,, = 0 GU
ax(l) 50, - Bty (32
cosf3,

where, p, 15 the worm pitch. Fmally, the function
g(d... S, 8) = 01s obtained as following:

g{9,.8,.90)= x{ (8)+p,, cosh, o, =0 (33)
The last step in this method is the derivation of

meshing equations as following. From Egs. 23 and 24, the
position vector 1, can be written as:

rl(uc’ 1E=‘ ww’ ¢w=‘ SW):

a;  d; g (pw'y(fnl))Sinwl

O (34)
a; 8p Ay (pw'y(fu))slnwl RW(uE,IE,ww)
a31 a32 a33 SW
0 0 0 1
Where:
a;, = cosy,cosycosdtsinsind,,

a,, = cosy,cosy cosdtsinsind,,
a;; = cossmy,,

a; = cosycosycosd teosisimd,
= s, cosy s, Fcosy cosd,
8y = SINSINY,,

a; = siny,cosd,

a32 = Sj-nYWgSj-nd)w

B33 = COSY

Let, p(u, L, ., &, S.) is the position vector

r(u, L, U, ¢, S,.) in Cartesian coordinates that can be
written as:

pl (uc’ lc’ ‘pw’ q)w’ Sw) = Llw (q)w’ Sw)pw(u:’ 1:’ ww)+

ay A A,
R=|a, a; a;|p, (uc> 1., ww)+ (35)
d d d

31 32 33

(pu ™ Jsinw, {p, 1" Jeosus,

where, L,,, 15 3%3 matnx results by eliminating last raw and
last column of M., matrix or results as Eq. (24) from the
relation L., = L L L, and:

T
R = ‘(pw-y(fn'))sinllfl Py

)cos Yy, 8,

To find the first meshing equation f*; = 0, consider
Sy = 0 (constant). Then the worm thread surface velocity
relative to gear tooth surface is:
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VIEVEAN:D =p, =L.p, R (36)
Where:
B COSy, (pw 7ygol))1]f1 7%01) siny, (37)
. oY O
—sin, (p, — v s, - 9 siny,
LIW = LlfL stsW + Llfosst (38)
[ —sinyf, —cosy, O
Ly =| —cosy,  —sinyy, 0 hir, (39)
|0 0 0
[—sin P, —cos¢, O
L.=| coso. —sing, 0 (i)w (40)
| 0 0 0
(-I) _ _COSBC )-(E.D“) (41)
Po COSA,
n, =L.,n, (42)
1, is the unit normal to worm thread surface. Thus:
(50 =n V& =0 (43)

To find the second meshing equation f&" =0,
consider ¢, = ¢ (constant). In this case, the worm thread
swface velocity relative to gear tooth surface is:

V) =p =L,,P, +R (44)

1, A, =0

P (O]

cosy, (Pw *YEOI))‘H — Yy sinyg
R =| —sinyy, (pw —yi )‘U1 ~ 3§ cosy, (45)
Sy
§, - L ogo (46)
tam Po
LIW = LlfL stsw (47)
L, is exactly the same as Eq. 39. Thus:

£ =n, V) =0 (48)

Knowing that (%! %) and W, are given as:

-« py2—]

Fig. 7. Normal section of rack-cutter for double circular
arc tooth profile

oo _ dxPdO o dy™ do
X = » ¥Ye 0=

do dt do dt
 dy, dO
bode dt

And the helix angle B, in all equations 1s zero for spur
gear.

Double circular arc tooth profile: The rack cutter has a
normal section as shown m Fig. 7. The rack cutter tooth
profile is symmetric about y -axis. The tooth of the rack
cutter consists of three circular arcs in each side and can
be represented in coordinate system s by the following
Eq. 49 (Liu and Chen , 2008):

x p,cos0 +x
) | ) = ;
LV =y |=|p,sint, Ty, (49)
7 0

where, (X, V) are the coordinates of arcs centers, p, 1s
the arcs radius, 8, is the angle (variable parameter) and
the subscribed p = a, f, g. Knowing that the working
surface of the tooth is generated by p, and p, while p,
generates the fillet. Equation 49 represents the position
vector of rack cutter tooth of double circular arc type.
This rack cutter can be used to generate any
noncircular gear using various generation processes.

RESULTS AND DISCUSSION
A computer program has been built using

SOLIDWORK 2016 to generate noncircular gears of
any centrode shape (different values of major radius,
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Fig. 8: Samples of generated non-circular gears with
double circular arc tooth profile of 20° pressure
angle using SOLIDWORK program: a) 3-lobes
gear with m, = 1 mm and teeth number N =57;
b) 2-lobes (Oval) gear with m, = 1 mm and N = 56
and ¢) Elliptical gear with m, = 3 mm and N = 25

Fig. 9. a) Non-circular gear generation in CNC Machine;
b) 2-lobes (Oval) aluminum gear with m, = 3 mm
and teeth number N = 26 and ¢) Elliptical aluminum
gear with m, = 3 mm and N = 25. Pressure angle =
20°, face width = 30 mm

eccentricity and lobes number m or n or both) with double
circular arc teeth profile for different gear design

parameters (module, pressure angle, teeth number and
face width) using the mathematical relations derived in
this study for centrode representation and generation
process. Also, the resulted computerized models of
noncircular gears can be coupled directly to CNC machine
to generate actual samples of noncircular gears or use
these models in finite element analysis. Figure 8 shows
number of computerized generated samples with different
lobes (centrode shape) of double circular arc teeth profile
in SOLIDWORK. While, Fig. ¢ shows actual samples of
noncircular gears {(oval gear and elliptical gear with
eccentricity of 0.2 and mimmum radius of 36 mm)
generated by CNC machine using aluminum material with
3 mm module, 30 mm face width and 20° pressure angle.
The resulted samples are very accurate m meshing
process and pitch curves of driver and driven gears are
match together without clearance or backlash.

CONCLUSION

The design and generation of noncircular gears are
more complex than circular gears due to the continuous
change in pitch curve. Knowing that the pitch curve
(centrode shape) specify the type of noncircular gear
such as elliptical gear, oval gear and other types.
Therefore, a mathematical equation of centrode shape
derived in this study can be used to represent any shape
of noncircular gear with any lobe munber. In addition, the
derived double circular arc tooth profile equations can be
used to represent the circular arc teeth with any module
and pressure angle. The resulted mathematical equations
for these gears are computerized successfully in
SOLIDWORK program to represent any type of
noncircular gear with double circular arc teeth. This
enables to manufacture the noncircular gears by CNC
machine or any computerized machine through direct
coupling between SOLIDWORK program and these
machines. Also, it helps to analyze the static and dynamic
behavior of these gears using SOLIDWORK program
itself or using any other program that can be coupled with
solidwork such as ANSYS program.
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