Tournal of Engineering and Applied Sciences 14 (22): 8273-8281, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Anticorrosion Performance of K,CrO, on Mild Steel in 0.5 M HC1

'Olugbenga Adeshola Omotosho, »*Joshua Olusegun Okeniyi,

*Tacob Olumuyiwa Ikotun and " “Esther Titilayo Akinlabi
"Department of Mechanical Engineering, Covenant University, 112001 Ota, Nigeria
*Department of Mechanical Engineering Science, University of Johannesburg,
2006 Johannesburg, South Africa
*Department of Civil Engineering and Building, Vaal University of Technology,
1900 Vanderbijlpark, South Africa
joshua.okeniyif@covenantuniversity.edu.ng, +234 809836502

Abstract: In this study, the anticorrosion performance of K,CrO, (potassium chromate) on mild steel i 0.5 M
HCl environment was studied. Samples of mild steel were immersed in the 0.5 HCl medium containing different
concentrations of the K,CrO, and the corrosion of the samples were monitored using Gravimetric method and
potentiodynamic polarization technique by Linear Sweep Voltammetry (LSV) instrument. Results by the two
corrosion monitoring techniques showed that the mhibition efficiency was increasing as K,CrO, concentration
mcreased, even as this effectiveness increment was more prominently observed in the electrochemical
monitoring technique of potentiodynamic polarization. By this, the inhibition mechanism by the K,CrO, was
characterized as predominantly anodic. Fitting of the experimental data to adsorption isotherm models identified
the Langmuir adsorption 1sotherm as having the best-fit for the metal-inhibitor nteraction mechamsm. This
indicated spontaneous and favourable adsorption as well as physisorption as the prevalent mechanism of
K,CrO, adsorption on the mild steel suface. These results exhibit potency of mild steel corrosion protection
in many industrial applications employing hydrochloric acid and in which mild steel is used as construction
material.
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INTRODUCTION

Mild steel 18 a commonly and broadly used
engineering construction material. Presently, about 850
tonnes out of every 1000 tonnes of the yearly production
of steel in the world 1s for mild steel. Mild steel 1s utilized
in huge quantities in structures and facilities fabrication,
chemical process plant, pulp/paper and petroleum refining
industries, notwithstanding the mimmal corrosion
resistance associated with mild steel (Katariya et al., 2013;
Fouda et al., 2011). The reason for this massive utilization
of mild steel as a construction material is because it 1s
cheap and relatively strong when compared to other
alternatives. Hydrochloric acid is aggressive to mild steel
and therefore, very complicated to tackle. In order to deal
with the complex and aggressive nature of HCI1 as it
concerns exposure to mild steel materials, it is necessary
to understand its behaviour in the presence of
inhibitors.

Amongst the many techniques of tackling the
corrosion of metals 1n service, the use of mhibitors

appears to be the most widely used method because of its
simplicity and applicability (Okenivi et al., 201 5a, 201 4a, b;
Omotosho et al., 2012a). Chromate inhibitors have been
identified as anodic type inhibitors (Omotosho et al.,
2018; Okonji et al., 2015) because of their inhibition
mechanism. They suppress reactions at the anodic site of
a material via. metallic dissolution restraiming mechanism
of msoluble substances formation at the anode
(Omotosho et al., 2018; Okonji et al, 2015). Chromates
have the tendency of forming an oxide by rapidly
combiming with oxygen in the solution and it 1s this
behaviour that makes them very useful as mlubitors. In
boiler surfaces where scales are formed during the service
life of a boiler plant, hydrochloric acid is used to remove
the scales to ensure proper functioning of the boiler plant.
However, in order to mimmize corrosion resulting from the
aggressive nature of hydrochloric acid, inhibitors like
chromates are introduced. Reasons for this are linked to
the identifications from several studies in the literature
that mhibitor usage 1s a lighly effective and the
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economical approach for controlling the corrosion of
metallic  construction  material m  aggressive
environments (Omotosho ef al., 2017a, b; Okeniyi, 2016,
Omotosho ef al, 2016a-c; Okemiyvi et al, 2015a-c;
Omotoshe et al, 2012b; Benali et af, 2011,
Omotosho et af., 2011a, b; Babic-Samardzija et al., 2005,
Larabi ef ai., 2005).

Since, mild steel is inevitably used in multifarious
industrial engineering applications contaimng aggressive
acidic process solutions, it 1s expedient to utilize chemical
inhibitors in the form of organic and inorganic inhibitors
to forestall the corrosion of metals. Studies have revealed
that nitrogen, oxygen and sulphur containing compounds
have the tendency to inlubit corrosion effectively
(Omotoshe et al, 2018, 201 7b; Okenivi et al, 2017a,
by Okeniyi, 2016; Okeniyi et al, 2013a, b, 2014c;
Omotoshe et al, 2013a, b, Omotosho, 2016b;
Omotosho et al., 2011b). However, there are also other
types of inorganic inhibitors that are known to be
effective in acidic media (Okeniyi ef al., 2013¢, 2014d;
Omotosho et al., 2010, 2012a; Ali et al., 2009) and these
are especially, useful for understanding corrosion
behaviour and corrosion protection approach. Therefore,
this research studies anticorrosion performance of K,CrO,
mtubitor on mild steel material when immersed in 0.5 M
HCI wvia. the usage of weight loss (gravimetric) method
and of potentiodynamic polarization technique.

MATERIALS AND METHODS

The chemical composition of the mild steel sample
used 1n this study 15 0.120% C, 0.050% 31, 0.26540% Mn,
0.008%P,0.034% 3, 0.0528% Cr, 0.2212% Ni, 0.0361 % Mo,
0.160% Cu, 0.0227% Al, 0.011% Va, 0.313% Co, 0.0553%
Nb, 0.042% W, 0.03% Sn and the remainder iron (Fe). The
preparation of the 0.5 M HCI solution was done by the
dilution of 37% purity HCI analytical grade purchased
from Sigma Aldrich with distilled water. The chemical
inorganic compound investigated was potassium
chromate with concentration ranging from 0 g/L (for the
control or blank medium) in increments of 2 g/. up
to 10 g/L of the potassium chromate intubitor. These were
prepared by the dissolution of requisite mass of the
inorganic inhibiter in 100 cm’® of distilled water and the
introduction of this into the acid solution (prepared by
adding 42 cm’ of HCl acid inte 500 cm’ of distilled water in
a1 L flat bottomed flask in a fume chamber). The mixture
was then made up to 1 L with distilled water.

Gravimetric measurements: The mild steel sheet was
cut inte 2x2x0.03 cm dimensions for gravimetric
measurements. After cutting the metal, the metal was

treated, according to procedures stated by ASTM (2015)
for pre-experimental treatment of mild steel specimens
for corrosion experiments. The metals were then stored
in desiccator until the experimental immersion testing
(Omotosho et al., 2016¢, Okeniyi et al., 2015e). Weight
loss measurements were conducted in non-reactive plastic
containers by immersing the samples for a period of
60 days at ambient temperature of 28°C. Though the
readings were taken every 4 days for 60 days, a separate
experiment was set up for each of the interval reading.
This was done to eliminate the disturbances associated
with removing samples from the solution and re-immersing
for another measurement.

Linear Sweep Voltammetry (LSV) measurements: The
electrochemical measurements were conducted by
employing a Digi-Ivy potentiostat instrument controlled
by DY 2300 Software under static conditions. The area of
the exposed metal surface was 1 cm®. The three-electrode
electrochemnical cell kit used was a Model K47 corrosion
cell kit acquired from Princeton Applied Research, TJSA.
The working electrode (mild steel sample) with a wire
connection was left inside the test media for 35 min to
attain steady state open circuit potential (E,,). The other
electrodes were the Ag/AgCl reference electrode and
the graphite rod counter electrode. Potentiodynamic
polarization measurements were conducted after obtaming
readings for the open circuit potential. The anodic and
cathodic potentiodynamic polarization curves were used
to mvestigate the electrochemical behaviour of the mild
steel samples in the uninhibited and inhibited test media.
These tests were conducted for each of the mlubitor
concentration. LSV momnitoring was performed from an
anodic potential of +0.5V and a cathodic potential of
-1.0 V. A scan rate of 0.1 V/sec was used. The linear
portions of the characteristic cathodic and anodic curves
were extrapolated to the corrosion potential (E_.) to
deduce the current densities (i,,,,).

Data analyses: The corrosion rate values based on
gravimetric tests were obtained using the formula in Eq. 1
(ASTM, 2015; Yadav et al., 2012):

CRg(mmpy):% (1
Where:
A, W, TandD The area (cm?)
Mass loss = (g)
Immersion time = (h)
Density = (glem”)
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After completing the LSV experiment, the Corrosion
Rate (CR) readings were deduced from Eg. 2
(Omotosho et al., 2016b, ¢ and 2017a; Canmet, 2008):

0.00327xi,, xE
D

CR 2

P

Where:

lcurr -

B

Corrosion current density (pA/cm?)
Equivalent weight (g)

The values of the CR find usefulness for estimating
Inhibition Efficiency (IE%) through the FHq. 3
(Okeniyi et al, 2014e, 20151, 2016a; Omotosho et al.,

2012b):

CRsampls with K,4Cr0y, %100 (3)

sample without K,CrQOy

Rsampls without K5 CrOy, B

CR

cC
IE% =

Also, the surface coverage (8) was estimated using
Eq. 4 (Okemyi et al, 2014f, 2015g, Lebrimi et al,
2013):

CR CR

sample without K,CrOy -

CR

sample with K,CrQ,

0= 4

sample without K5 CrO,

RESULTS AND DISCUSSION

Corrosion inhibition studies: The plot of corrosion rate
against time for mild steel immersed in 0.5 M HCI solution
depicted in Fig. 1 clearly shows that corrosion decreased
as inhibitor concentration increased. Of particular interest
is the corrosion rate values displayed by the 2 g/
inhibitor concentration which showed lower values in
comparison to the control on the first day only.
Subsequently, on the on other days up till the 44th day its
values were higher than the control with minor rebound
on the 28 and 36th days. This meant that it was not
effective in corrosion control possibly due to the quantity
used for 43 days.

However as the experiment progressed corrosion rate
values for the control became higher from the 48-60th
days of the experiment. Generally, it 13 observed that as
inhibitor concentration increased corrosion rate reduced.
This is also, clearly shown in Fig. 2 which exhibits the
wntubitor efficiency of the varying inhibitor concentration
as the experiment progressed for the weight loss and
potentiodynamic polarization technique. This result is
expected, since, an mndirect relationship exists between
corrosion rate and inhibitor efficiency. The trend of the
corrogion rate in order of increasing inhibitor efficiency
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Fig. 1: Corrosion rate agamst time for mild steel samples immersed m 0.5M HCl solution at ambient temperature of 28°C:
a) Normal scale for 60 days and b) Rescaled to view 0.001-0.006 mmpy for 20-60 days
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Fig. 2: Inhibition efficiency of potassium clromate on the
corrosion of mild steel in 0.5 M HCI solutions at
ambient temperature of 28°C
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Fig. 3: Variation of surface coverage (0) with potassium
chromate concentration (g/1.) at a temperature of
28°C for different time intervals for mild steel
immersed m 0.5 M HCI

for the weight loss and potentiodynamic polarization

technique 1s 2<4<6<8<10 g/L, of potassium chromate in the

0.5 M HCI test-environment. This result trend finds

agreement with another study conducted by Anejjar et al.

(2014) where a potassium salt of a thiocyanate anion was

used. Thus, the result of the study can be used to provide

an adequate direction to the application of K,CrO ,
inhibitor (Fig. 2).

The plot of surface coverage presented n Fig. 3
shows the swurface coverage of the inhibitor as the
experiment progressed. The graph in Fig. 3 was plotted to
mvestigate, if there are any contributions of times of
exposure to the relationship between surface coverage (6)
and mhibitor Concentration (C). The 1, 48 and 60th day of
the experiment exhibited better surface coverage during
the experimental duration. The reason for this could be
that for the first day the mhibitor did not encounter any
distrbance in the test solution because the corrosion
reaction had just commenced while the reason for the 48th
and 60th days could be as a result of the duration of

immersion. The inhibitor was able to undergo passivation,
depassivation and repassivation and still regained its film
forming strength during this time duration.

The corrosion products formed could also have
contributed to the process of suppressing the corrosion
reaction, thereby resulting in better surface coverage
values. The surface coverage values of the 1, 48 and 60th
days increased as concentration increased. The surface
coverage values on the 12, 24 and 36th day showed lower
but similar values when compared to the values for the 1,
48 and 60th day. However, they all exhubited an mereasing
trend as concentration increased.

Figure 4a shows the potentiodynamic plots of for
mild steel immersed 1 0.5 M HCl solution in the presence
varying concentration of potassium chromate at ambient
temperature of 28°C.

The behaviowr of the potentiodynamic curves
presented in Fig. 4da depicts attributes that are of similar
behaviour with almost no disparities. When compared to
the control the rate of corrosion of the mild steel metal in
the varying K,CrO, concentrations showed a decrease.
However, these decreases in corrosion rate though
positive were not sigmficantly high as depicted in the plot
for inhibitor efficiency. The electrochemical parameters
displayed some noticeable changes. Analysis showed
that a maximum displacement in the E value was 8 mV
which indicates that the potassium chromate inhibitor acts
as a mixed but predominantly anodic inhibitor in the acidic
media at 28°C. Tt is possible to draw this conclusion about
the inhibition mode because same technique was used
reported by Omotosho et al. (2016b), Ameer and Fekry
(2010) which states that when maximum displacement in
E... (inhibited) is below 0.085 V in contrast to the E_,
(control) then inhibition is mixed. A shift of the
potentiodynamic curve in Fig. 4a could be observed in
both anodic and cathodic direction by the different
inhibitor concentrations. However, the average H.,,, values
of the mhibited samples were used to determine the
direction of the curve to arrive at the result of a mixed but
predominantly anodic behaviour. This meant that the
inhibitor restrained metallic dissolution at the anode.

Figure 4b depicts the plots of the anodic (B,) slope,
cathodic (B,) Tafel slope and corrosion potential (E_ )
versus different inhibitor concentration obtained from the
potentiodynamic polarization tests. A close look at Fig. 4b
shows that the anodic and cathodic region is distinctly
separated, however, the E_,, curve transits more often in
the anodic region thereby depicting the direction of the
reactions taking place as predominantly anodic as earlier
advanced. This shows that the inlubitor imtially
influences the oxygen reduction process largely before 1t
drives the hydrogen evolution mechanism to a lesser
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Fig. 4: a) Plots of potentiodynamic polarization from LSV experiments and b) Plots of tafel slopes and corrosion potential
against inhibitor concentration from LSV experiments at ambient temperature of 28°C

degree. Comparing the ancdic and cathodic curve one
sees that the degree of fluctuation is more in the anodic
region than in the cathodic region The anodic slope
values initially increased as concentration increased
before 1t began to reduce. The cathodic slope, however,
experienced a marginal concentration
increased. The maximum displacement of P, in the
experiment was 4.27 A/V whereas it was 1.33A/V for B,.
Essentially, the results show that the introduction of
potassium chromate suppresses the corrosion reaction as
concentration increased (Fig. 4).

increase as

Adsorption studies: Several adsorption isotherms were
employed to characterize the metal-inhibitor interaction
mechanism by fittings to the experimental data obtained
during the experiment but the Langmumr adsorption
isotherm was found to be the best based on the R” values
obtained. Table 1 shows these R* values for all the
adsorption isotherms investigated.

Though the Langmuir adsorption isotherm is
finding suitability to applications of metal-mhbitor
adsorption mechamsm, it was onginally generated to

Table 1: Adsorption isotherms employed for metal-K,CrO, interaction

mechanism

Adsorption isotherm R?
Frumkin 0.96
Freundlich 0.99
Temkin 0.993
Langrmiir 0.99%
Flory-Huggins 0.987
Dubinin-Radushkevich 0.971
Boris-Swinkel 0.987
El-Awady 0.993

describe gas-solid phase phenomena adsorption on
activated carbon (Foo and Hameed, 2010). The Langmuir
adsorption 1sotherm having the expression that 1s as
presented in Eq. 5, often has a dimensionless constant
called the separation factor, R,, associated with itand
the expression for this parameter is also, presented in
Eq. 6,1.e. (Okeniyi et al. 2015h, 201 6b; Foo and Hameed,
2010):

c__ 1 < (5)

e KLaQK QK

Ri= ©)
1+K_,C,
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Where:
K. =
Q. = The maximum monolayer capacity (mg/g)

C, = Corrosion performance at the initial concentration

The Langmuir isotherm constant

The adsorption of the inhibitors can easily be
categorized based on the R, values which depicts the
degree of favourability of the adsorption process. It has
been established from studies that when R, values are
between 0 and 1 the adsorption 1s favourable and when it
is >1 it is unfavourable. However, when R,, = 1 the
adsorption 1s said to be linear but when it is equal to 0 the
adsorption 1s said to be irreversible (Okeniyi ef al. 201 44,
2016b; Foo and Hameed, 2010).

Prior to the analysis of the R, , values, it 1s important
to estimate the Q, and K., values. This is done by a
mathematical comparison of the linear expression mn
Fig. 5 obtained through the plot of log (C/8) against
log C and the Langmuir equation stated earlier (Eq. 5). The
slope 1s mnterpreted straightaway as the reciprocal of Q,
while the intercept is translated as the reciprocal of the
product of Q, and K.

The values obtained for the slope, intercept, Q,, and
K., and R, are shown in Table 2. From Table 2, the R,
value shows that the adsorption is favourable for the
obtained value that was in the range O<R;.<1. The
Langmuir adsorption isotherm, therefore, best describes
metal-inhibitor interaction mechanism and it assumes that
there are no interactions between adsorbed intubitor
molecules on the metal surface.

1.20 1
1.104
1.00 +

T T T T 1 T T T T 1
0.20 0,30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20
logC

Fig. 5: Plot of Langmuir adsorption isotherm of
potassium chromate on the mild steel surface ata

room temperature of 28°C

Table 2: Parameters for Langmuir isotherm and separation factor

Variables Values
Slope 0.772
Intercept 0.361

Qu 1.295

K. 2.139

R 0.190
Favourability condition Favourable

In order to further evaluate the adsorption mechanism
of the inhibitor, the Gibbs free energy (of adsorption was
computed using Eq. 7 (Okeniyi et al. 201 5h, 2016b; Foo
and Hameed, 2010):

AG =-2.303RTLog(55.5K ) 7

adsorption

In Eq. 7, R and T are the umversal gas constant
(8.314 kI/mol’K) and ambient temperature (i.e., 28°C=301
K), respectively. A Gibbs free energy value of
-11.954 kJ/mol was obtained from the analyses. Since, the
value is negative, this Gibbs free energy suggests a
spontaneous adsorption process for the mhibitor. Also,
that the Gibbs free energy is less negative than 20 kJ/mol
indicate physisorption adsorption as the prevailing
mechamsm of the potassium chromate corrosion
protection on the mild steel surface in the hydrochloric
acid test-environment.

It 1s based on these results support that usage of
potassium chromate as an effective inhibitor of mild steel
corrosion is established in applications where the mild
steel construction material is employed for industrial
enviromments utilising hydrochloric acid.

CONCLUSION

The study reported m this study investigated the
effect of varying concentrations of potassium chromate
(K,Cr0,) on the corrosion of mild steel m 0.5 M HCI
solution at ambient temperature of 28°C. Based on thus,
the following conclusions could be deduced from the
study: potassium chromate was most effective at mubitor
concentration of 10 g/I.. The weight loss result also,
agreed with the potentiodynamic polarization result
because both results followed the same trend. The
corrosion rate trend in terms of mcreasing inhibition
efficiency was: 2<4<6<8<10 g/ of potassium chromate in
the 0.5 M HCI test-environment. The potentiodynamic
polarization result mdicated the mhibition mechamsm as
a mixed but predominantly anodic inhibition mechanism,
since, 1t mfluenced more of the anodic metal dissolution.
The Langmuir adsorption isotherm explains to a large
extent the interaction mechanism between the metal and
the mlubitor. The adsorption of the inhibitor on the metal
surface showed a consistency with a favourable degree.
The adsorption of the inhibitor on the metal surface is
through a spontaneous process even as the adsorption
mechamsm supports prevalent physisorption. The results
from the study support use of potassium chromate
wnhubitor for the corrosion protection of mild steel
construction materials in industrial applications where
hydrochloric acid medium are present.
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