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Abstract: In this study, a numerical study of the stochastic dynamics of a nuclear reactor is carried out using
the Euler-Maruyama method to resolve the stochastic point kinetic equations. The method was tested using
different uncertainties, imtial conditions and different forms of reactivity with one and six groups of delayed
neutron precursors using up to 5000 Brownian trajectories for each numerical results. The average expected
values, standard deviations of neutron density and delayed neutron precursors were calculated in each
computational experiment. It was compared with other methods reported mn literature and on average with the
determimstic model of pomt kinetics, demonstrating that the BEuler-Maruyama method for this proposal, apart
from being easy to implement is extremely precise in obtaining expected values.
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INTRODUCTION

A nuclear reactor 1s a device m which controlled
nuclear reactions are carried out to free energy. The
dynamics of this device 1s described m determiristic form
by point kinetic equations which are a set of strongly
linked non-linear differential equations which describe an
average value of the neutron density and delayed neutron
precursor concentrations. However, in levels of low
power, high randomness occurs in the dynamics of the
neutrons 1n the presence of a weak source (Stacey, 2007),
therefore, the process must be described with the
stochastic point kinetic equations.

There are various researches in literature in which the
stochastic point kinetic equations are solved: the
Piecewise Constant Approximation (PCA) and Monte
Carlo (Hayes and Allen, 2005), Euler-Maruyama and
Taylor 1.5 (Ray, 2012; Ray and Patra, 2013) the Simplified
Stochastic Point Kinetics (SSPK) (Ayyoubzadeh and
Vosoughi, 201 4) the Analytical Exponential Model (AEM)
(Nahla and Edress, 2016a) the Efficient Stochastic
Model (ESM) (Nahla and Edress, 2016b) and the
Double Diagonalization-Decomposition Method
(DDDM) (Da Silva et ai., 2016).

In this research, due to the difficulty in generating
sufficiently random numbers, consideration was given to

different seeds, this is a set of values to begin the
generation of random numbers by means of the randn
function of MATLAB and with this, simulation can be
carried out of different Browman motions whose
differential i1s known as white noise which express as
uncertainties which serve to resolve the stochastic point
kinetic equation using the Euler-Maruyama method.
Considering the average of numerical experiments
obtained for each seed, the results are compared with the
methods reported in literature and on average with the
deterministic model calculated with Runge-Kutta O (h').

MATERIALS AND METHODS

The stochastic point kinetic equations: It is possible to
obtain the stochastic point kinetic equations based on the
analysis of the events of birth and capture of neutrons
and to assume that the changes in neutron population
follow a normal distribution (Hayes and Allen, 2005). This
analysis results from the following non-linear system
of m+l Ito stochastic differential equations for the
neutron density and delayed neutron precursor
concentrations:

—=Af’(t)+Q(t)+B% (L) @
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Where:
n(t) aft) W (t)
() 0 W, (1)
P(t)=| C,() [Q(t)=| 0o |[W(t)=| W,(t) | @
Cult) 0 W (1)
for i =1, ..., m, where, m is the number of groups of

concentration of delayed neutrons precursors n(t) and
C(t) are the neutron density and the ith density of
delayed neutrons precursors, respectively, q(t) is the
external source of neutrons and W (t), W,(t), ..., W, ()
are Wiener processes or Brownian motion and dW (1),
dW,(t), ..., dW_,,(t) are uncertainties or white noise.
On the other hand, the matrices A and B are given by:

PB s
A 1 2 m
% a0 0
A= (3)
By 0
A
B—m 0 0 Aoy
L A ]
Z &, a; &y
a, b, b, b, .,
B=la, b;; by; - by (4a)
am bm, 1 bm 2 bm, m

Dong the required multiplication, using Eq. 4a and 2
in the term B"dw(t) given m Hq. 1, provides that to each
(m+1)
uncertainties, this is one for neutrons density and m for
each concentration of precursors as can be seen in
Eq. 1-2.

B represents the covariance matrix as it is in Hq. 4a, it
is a symmetric, positive matrix where the main diagonal
represents the variance and the other elements represent
the covariance. With the disadvantage of calculating B"
that would give a computational effort. We propose that
the calculation of each of the variables contamed mn B(t)

variable contained inP®@m would give wus

15 associated with only one uncertamty and that it
depends on the same variable that will be calculated, this
means that we assume that the variables contamed n B(t)
have zero covariance, this it 1s possible to write the Eq. 4a
i the following way:

[ 0 0
0 b, 0 - 0

B**=0 0 b,, - 0 (4b)
0 0 0 b, .

where, the elements of matrix B or B** are defined as:

(| AL ORIV e ey )

A
a =Bl 1ppvala(nac (o) (©)
BBv 7
i = AJ n{t)+8, A Ci{t) ™
Where:
Pl = The reactivity
v = The average neutron number per fission
A, = The decay constant of the ith precursor
which emits delayed neutron
B = The fraction of delayed neutrons of the ith

group of precursors
p=¥mp = The total fraction of delayed neutrons

A = The prompt neutron generation time
o, = The Kronecker delta, defined in accordance
with the following Eq. ¢
= ®)
O 0if1#]

Equation 1 1s known as the stochastic pont kinetic
equations and generalizes the deterministic equations,
since when B = 0, it returns to the deterministic model
(Kinard and Allen, 2004). The unportance of (B**) 13 that
it is not required to compute the square root of a matrix
which is a great advantage when compared with B. The
matrix B** was found in the literature (Ayyoubzadeh and
Vosoughi, 2014) considering a poisson distribution,
using the stirling’s approximation, stable distributions
with the disadvantage of additionally requiring two
Wiener processes to solve Eq. 1 and finally using the
independence of normally distributed random variables to
simplify the problem. In this research, it was necessary to
suppose only the covariance is zero.

The Euler-Maruyama method: The Euler-Maruyama
approximation is a continuous multidimensional
stochastic  process Y, = {Y().t, <t<T} which satisfies the
following iterative scheme:
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Voo = Yora(t, ¥, heb (e, ¥, )AW (9)

n+l n

Forn=0,1, 2, ..., N-1 where ¥, =¥it,) = [Y‘,YDZ,YS___ ¥ ]T is

defined as the 1mtial conditions, the time step defined as
h =t ,-t, and AW =W _,,-W, is the increase of the Brownian
motion or uncertainties defined as AW =i where, 1 is a
vector of random variables normally distributed with
a mean =zero and unit variance. Applying the
EBuler-Maruyama method given for Eq. 10 to the
expression given for Eq. 1 gives the result:

(10}

1
Foo =P+ (4. F+3, )h+BiaW

With initial condition &, = ¥, Equation 11 is the solution
of the point kinetic stochastic equations using the
Euler-Maruyama method m Eq. 1.

RESULTS AND DISCUSSION

The following are the results of the proposed
method, using different uncertainties AW for multiple
computational experiments. Calculation of the expected
values and standard deviations for different uncertainties
is carried out by means of different seeds. The results are
subsequently compared with stochastic methods reported
in literature such as PCA and Monte Carlo (Hayes and
Allen, 2005), Euler-Maruyama and Taylor 1.5 (Saha, 2012,
2013), AEM (Nahla and Edress, 2016a) ESM (Nahla and
Edress, 2016b) DDDM (Da Silva et al., 2016) and on
average with Runge-Kutta O¢h") deterministic. Tn all the
computational experiments shown, up to 5000 Brownian
trajectories were used for each seed.

To test the proposed method, the first experiment
consists of a step-reactivity insertion p = -1/3 when one
precursor (m = 1) 1s considered in a nuclear reactor with
the following parameters: decay constant A, = 0.1 sec’,
fraction of delayed neutrons B, = 0.05, average neutron
number per fission v = 2.5, generation time A = 2/3 sec,
external source q = 200 sec” and an itial condition of
B, =[400,300]" . The simulation was made over N = 40 steps

with an interval [0, 2] sec. Table 1 shows the mean of the
expected values and standard deviations of the
neutron density n(t) and the total concentration of
precursors C(t) int = 2 sec using different seeds with one
uncertaimnt AW=Aw where, ¢ t)="Y " c,(t) . These results

indicate that, for 10 different seeds, each value of the
neutron density and concentration of precursors 1s
very similar to the average value, respectively when we
use the proposed method (EM*), this 1s using the
Euler-Maruyama method with a given uncertainty for
Eq 4.

Table 1: Expected values and standard deviations using different seeds for
one precursor with one uncertainty

Seeds Em2ses) om(2sec)) E(C,(2se)) o(C, (2sec)
100 400.1973 31.183%6 209.7546 7.929925
200 399,7253 31.98934 209.7701 7.966396
300 3902918 31.00181 209.9346 8.056304
400 4004318 31.56806 2090.8427 7.794507
500 390.8844 31.56903 300.0402 7.840968
600 4003342 31.42084 2099319 8.028536
700 3994346 31.62014 209.8181 7955117
800 400.2483 3098744 209.8795 7.883205
200 399.0195 31.09449 209.8779 8.017407
1000 399,8987 31.49116 300.1506 8.062208
Mean (EM") 399.8466 31.39263 209.9000 7.953466

Table 2: Expected values and standard deviations using different seeds for
one precursor with two uncertainties

Seeds En2sec)) om(2sec)) E(C (2sec)) o(C (2sec))
100 400.1021 31.57557 299.7669 10.24146
200 399.6746 32.40962 299.6904 10.34983
300 399.2808 31.43599 299.8284 10.32776
400 400.3723 32.00041 299.8863 10.14301
500 399.9058 31.96058 300.0430 10.13379
600 400.3183 31.83929 299.9589 10.32397
700 3993583 32.01649 299.7299 10.25591
800 400.1835 31.37446 299.9067 10.13157
900 398.9828 31.50246 299.7565 10.30098
1000 399.9648 32.03126 300.1290 10.47774
Mean (EM™) 399.8143 31.81461 299.8696 10.26860

Table 3: Comparison of methods in a problem of one precursor

Methods En(2sec)) om@sec)) FE(C (2sec)) g(C (2sec))
Monte Carlo 400.0300 27.31100 300.0000 7.806300
PCA 395.3200 29.41100 300.6700 8.356400
EM (8aha) 412.2300 3439100 315.9600 8.265600
Taylor 1.5 412.1000 34.51900 315.9300 8.315800
AEM 396.2800 31.21200 300.4200 7.957600
ESM 396.6200 0.919900 300.3900 0.001600
DDDM 402.1300 28.93000 305.8400 7.924900
EM" 399.8143 31.81461 299.8696 10.26860
EM" 399.8466 31.39263 299.9000 7.953466
RK O 400.0000 - 300.0000 -

Considering that there are two uncertainties AW, and
AW, associated with each one of the variables we want to
know in this case n{t) and C(t). Table 2 shows the mean
of expected values and standard deviations of the neutron
density n (t) and the total concentration of precursors
C(t)int =2 sec. The results shown i Table 1 and 2
indicate that there is a slight change in the expected
values but a significant change in the standard deviation
for the concentration of precursors which seems
reasonable, since, we have considered one uncertainty
more than in the first case, represented, by (EM™*) and
(EM**), in this second case the Euler-Maruyama method
with two uncertainties given by Eq. 5 15 used.

Table 3 shows the comparison of the previous results
with other works reported in literature and their validation
with the deterministic model. First, we can see that the
current proposal has a mean value for the neutron
densities and for the very approximate concentration of
precursors when we compare it with the deterministic

8350



J. Eng. Applied Sci., 14 (22): 8348-8353, 2019

Table4: Expected values and standard deviations for o = 0.003 (or
300 pem) using different seeds for one uncertainty

Table 5: Expected values and standard deviations for p = 0.003 (or
300 pem) using different seeds with seven uncertainties

Seeds E m(0.1 sec)) o m0.1 sec)) E (C(0.1 sec)) o(C(0.1zec)) Seeds Em{0.1sec) gn(0.1sec)) E(CL0.1sec) a(CL0.1sec))
100 179.3362 217.3994 448867.8 1989.857 100 179.0575 217.8088 448867.8 2174.250
200 179.0589 219.5875 448847.9 1987.940 200 179.3576 219.8941 448845.9 2179.808
300 177.1956 215.0377 448875.7 2042.874 300 & S T 216.1228 A18876.6 2241.775
400 179.1409 217.5602 448877.8 1996.082 400 179.6542 218.4495 448875.3 2186.352
500 171.9135 215.7338 448918.2 1960.309 500 171.9785 216.7798 448922.3 2144.035
600 178.4538 220.5902 4488823 2000.672 600 178.5670 221.5763 448880.4 2188.824
700 177.1948 216.1799 448864.9 2003.152 700 176.9575 216.8416 448863.3 2197.016
800 179.5957 215.6196 448915.2 2002.388 800 179.4934 216.8765 448916.7 2186.658
900 178.7917 216.6938 448848.5 2021.231 900 178.9073 217.7606 448853.3 2217.282
1000 181.7231 217.0913 448932.4 2039.020 1000 181.8915 2184109 448040.5 2235.841

Mean (EM*) 178.2404 217.1493 448883.9 2004.353

value when the Runge-Kutta method is used. In addition,
the values obtained in the cwrent proposal, especially
when one uncertainty is used are very much in agreement
when compared with the results obtained using the
Monte Carlo and PCA methods (Hayes and Allen, 2005)
and with the AEM method (Nahla and Edress, 2016a).

The second and third experiment consist of the
insertion of two reactivity constants for a prompt
subcritical insertion p = 0.003 {or equivalently 300 pem,
parts per hundred thousand) and for a prompt
critical insertion p = 0.007 (or equivalently 700 pcm),
respectively in a problem of six groups of precursors
(m = 6) for a nuclear reactor with the following parameters:
decay constants A, = [127, 317, 1150, 3110, 14000,
38700]x10* sec” fractions of delayed neutrons J, = [266,
1491, 1316, 2849, 896, 182]x107, total fraction of delayed
neutrons, f = 0.007, fission neutrons v = 2.5, generation
time A = 2x107 sec and an external source g = 0 sec”. Both
computational experiments were carried out over N = 40
steps at intervals of [0, 0.1] and [0, 0.001] sec with the
mnitial condition B, = [1,B, /A, AR, fA A -, By /A AT -

Table 4 shows the mean values expected and
standard deviations of the neutron density n(t) and the
total concentration of precursors C.(t) for a prompt
subcritical msertion p = 0.003 (or equivalently 300 pem) in
t = 0.1 sec, using different seeds with one uncertamty
AW =AW, . Again the results using 10 different seeds, each
value with the neuron densities and concentration of
precursors are very similar to the average value.

Table 5 shows the mean of the expected values and
standard deviations of the neutron density n(t) and the
total concentration of precursors C(t) for the same case
as Table 4 with the difference that
uncertainties( AW = Aw,i=1,---,7 Jare used. These results are

seven

approximately the same for the neutron density and
concentration of precursors when compared with their
average value when using 10 different seeds.

Table 6 compares the previous results with other
works reported in literature and the determimistic point
kinetic model. It can be observed that the results obtained

Mean (EM™) 1783439 218.0521 448884.1 2195.184

Table 6: Comparison of methods for p = 0.003 (or 300 pem) in a problem
of six precursors

Methods En(0.1) om(01)yy E(C (0.1 o(C (0.1)
Monte Carlo 183.0400 168.7900 447800.0 1495.7700
PCA 186.1600 164.1600 449100.0 1917.200
EM (Saha) 208.6000 255.9500 449800.0 1233.380
Taylor 1.5 199.4000 168.5400 449700.0 1218.800
AEM 186.3000 164.1400  449000.0 1911.900
ESM 179.9300 10.55500  448900.0 94.75000
DDDM 187.0500 167.8300 448800.0 1475.600
EM" 178.343% 2180521 448884.1 2195.184
EM" 178.2404 217.1493 448883.9 2004.353
RK O(hY 179.9500 - 448878.0 -

Table 7: Expected values and standard deviations for p = 0.003 (or
700 perm) using different seeds with one uncertainty

Em o(n E(C, o (C,
Seeds (0.001 secy)  (0.001 sec))  (0.001 sec))  (0.001 sech)
100 134.2827 92.56374 446360.5 18.79142
200 134.0279 93.27359 446359.9 18.77698
300 134.1766 92.73754 446360.3 18.62391
400 135.6616 9429252 446360.4 18.81022
500 136.6873 92.72723 446360.6 18.62025
600 134.4107 94.01819 446360.1 18.90852
700 134.3027 92.79483 446360.2 18.5223¢6
800 135.9779 93.44768 446360.5 18.66368
900 133.0583 92.33267 446359.8 18.66976
1000 137.6626 93.66755 446360.9 18.91518
Mean (EM") 135.0248 93.18555 446360.3 18.73023

using the proposed method with one and seven
uncertamnties (EM* and EM**) when compared with an
expected value in the deterministic case and is very
approximate to the Runge-Kutta methods and the recently
published ESM method (Nahla and Edress, 2016b). In the
standard deviation, it i1s similar to the PCA method
(Hayes and Allen, 2005). However, there is a difference in
the results when compared with the Euler-Maruyama
method (Ray, 2012).

For a prompt critical msertion p = 0.007 (or
equivalently 700 pem), Table 7 shows the mean of the
expected values and standard deviations of the neutron
density n (t) and the total concentration of precursors
C.(t) n t = 0.001 sec, using different seeds with one
uncertainty AW = AW, . The results are very similar and there
is practically no difference in each calculation carried out
with regard to the expected values and standard
deviations.
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Fig. 1: Density of neutrons for a sinusoidal reactivity through one period

Table 8: Expected values and standard deviations for o = 0.003 (or

Table 9: Comparison of methods for p = 0.003 (or 700 pcm) in a problem

700 pem) using different seeds with seven uncertainties of six precursors
E(n o(n E(C, o (C, E( o(n E(C, o (C,

Seeds (0.001 sechy  (0.001 sec))  (0.001 sec))  (0.001 sec)) Method (0.001 sec)  (0.001 sec))  (0.001 sec)) (0.001 sec))
100 134.3062 92.62652 446360.4 29.09122 Monte Carlo  135.6700 93.37600 446400.0 16.22600
200 134.0041 93.54258 446359.8 29.27451 PCA 134.5500 91.24200 446400.0 1944400
300 134.2316 93.10647 446360.2 28.98068 EM (8aha) 139.5680 92.04200 446300.0 6.071000
400 135.7164 94.47060 446360.6 29.35535 Taylor 1.5 139.5700 92.04700 446300.0 1833700
500 136.6362 92.77626 446360.7 28.89884 AEM 134.5400 91.23400 446400.0 19.23500
600 134.3586 9410905 446360.0 29.54918 ESM 134.9600 6.852000 446400.0 2.529000
700 134.2543 93.02594 416360.1 28.91319 DDDM 135.8600 93.21000 446300.0 17.84500
800 135.9165 93.53007 446360.6 29.02346 EM™ 135.0188 93.34604 446360.3 29.15637
900 133.0774 92.46126 446359.6 28.93699 EM" 135.0248 93.18555 446360.3 1873023
1000 137.6863 93.81167 446361.2 29.54030 RK O(h*) 135.0000 - 446360.0 -

Mean (EM"™) 135.0188 93.34604 416360.3 29.15637

Table 8 shows the mean of expected results and
standard deviations of the neutron density n(t) and the
total concentration of precursors CJ(t) for the same
case as Table 7 except that seven uncertainties
AW =AW,i=1,-,7 are used associated with each of the
variables that we want to know in this case (t) and C(t)
(Fig. 1-4).

The results obtained for a prompt critical insertion
p =0.007 (or equvalently 700 pcm) are presented in
Table @ and compare the results of other methods
reported in literature, together with their validation with
the deterministic model. From these results we can see
that the proposed model when an uncertainty (EM") is
used or seven uncertainties, (EM'™) in the case of the
expected values are very precise when compared with the

methods m lLiterature and their exactness can be proven
with the Runge-Kutta method. For the standard deviation
value for the nuclear density we can say that all methods
are very similar also for the standard deviation in the
density of precursors the methods presented in the
current propesal (EM") and PCA (Hayes and Allen, 2005)
practically coincide.

The results given in Table 4, 5, 7, §,
improvements in the approximations by using only one
uncertainty. On the other hand, according to Table 6 and
9, it can be seen that the present proposal 1s in line with
the values reported by other methods (Hayes and Allen,
2005; Nahla and Edress, 201 6a, b, Da Silva et al., 2016)
while in another publication (Ray, 2012) in which the
same method 18 wused there are significant
differences.

indicate
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Fig. 2: Density of neutrons for a sinusoidal reactivity through two periods
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Fig. 3: Density of neutrons for a sinusoidal reactivity through three periods

Finally, the last computational experiments shown  constant A, = 0.077 sec”, fracticn of neutren precurser 3,
(Ray, 2013) consist of a sinusoidal reactivity p(t) p,Sin = 0.0079, time of neutron generation A = 107sec, external
(mt/T) in a problem of one precursor (m = 1). The neutron source q = 0 sec’, an average period T =50
parameters used for this simulation consist of an initial ~ sec and iitial condition®, - [, /4,A] . The results
reactivity p, = 0.005333 (or equivalently 533.3 pem), decay ~ obtained are shown m Fig. 1-4 show the expected value
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Fig. 4: Density of neutrons for a sinusoidal reactivity through eight periods

of the neutron density for a time interval of [0.100, 0.200,
0.003 and 0.800 sec], respectively. Comparing the results
obtained with the current proposal, under the same
parameters we found that there are time ntervals
considered as one, two, three and eight spikes,

respectively. This analysis is supported by recent studies
(Nahla and Edress, 2016).

CONCLUSION

In this study, the stochastic point kinetic equations
were numerically solved using the Euler-Maruyama
method in the cases in which each random variable n(t)
v,(t) depends on one or several uncertainties AW . Tn this
way, approximations were obtained of the expected values
for the neutron density and delayed neutron precursor
concentrations using different seeds with various types
of reactivity and imtial conditions. The results were
compared with other methods reported in literature for
which it was possible to demonstrate that this proposal
achieved better approximations, confirming that the
method, apart from being easy to implement is efficient in
the study of stochastic kinetics in a nuclear reactor.

RECOMMENDATIONS

The researchers consider and recommend making
greater efforts in research to propose a new matrix B
and/or for the calculation of the square root of the matrix
B presented mn Eg. 7-5), since, this would enable to
establish if it is necessary to use all the uncertainties( AW, |

i=1, .., 7) for each of the unknowns and with this to be
able to determine the standard deviation of neutron
densities and delayed neutron concentrations. At the
same time, more numerical simulations should be carried
out with different seeds that provide numbers which
would be as random as possible to reconfirm that the
results presented in the literature are correct.

The researchers also consider that there is a potential
for work to be done by mcluding different considerations
1n the study and granting different possibilities that can
be presented, making the problem a little more general,
considering, for example, the inclusion of 8 groups of
delayed neutrons and determiming how this would affect
the average value and standard deviations of neutron
densities and concentration. The effect of feedback was
not considered in the present research and it would be
very interesting to know what the stochastic behavior of
the nuclear density would be and if it 15 also possible to
determine the reactivity which is perhaps the most
important parameter in a nuclear reactor. Finally, another
possibility would be to take the work to stochastic spatial
kinetics n 2D and 3D problems, possible in this way we
could be able to better describe the real behavior of a
nuclear reactor.
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