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Dynamic Response of a Timoshenko Shaft with a Rigid Disk
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Abstract: This study presents the method to study the free and forced dynamic response of a shaft of a Pelton
turbine unit. Equation of motion for the bending vibration of the shat of the Pelton turbine assembly 1s
developed by using Hamilton principle by assuming Pelton wheel as a rigid disk attached on a Timoshenko
shaft. Tmpact provided by the water jet is represented by Fourier series expansion. Governing ecuations of the
system 1 terms of coupled partial differential equations are converted mte coupled modal equations by using
assumed mode method. Then, these coupled ordinary differential equations are solved for free and forced

response of the system.
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INTRODUCTION

Most of the machines used in industries, power
plants consists of rotating components. Dynamic
behaviour of such systems are studied by developing a
rotodynamic model which consists of mainly disk, shaft
and bearings. To improve the performance and reliability
of such systems dynamic phenomena occurring during its
operations should be mvestigated. The dynamic response
of such shaft-disk system depends upon parameters,
interaction between system components, interaction of
system with intervening medium and operating
conditions.

Many researchers have attempted to mvestigate
different aspects of such system to understand the
dynamic behaviour of the system. Some researchers have
studied dynamic behaviour of shaft only, some have
studied the dynamic behaviour of the shaft and disk
assembly while some have studied effect of different
external interactions that occur on the bearing or on the
disk.

Thomas and Abbas (1976) have developed a fimite
element model for the stability analysis of Timoshenko
beam subjected to periodic axial loads and have studied
the effect of the shear deformation on the static buckling
loads. They have also mvestigated regions of dynamic
instability and have presented values of critical loads for
beams with various shear parameters.

Nelson (1980) has used Tiunoshenko beam theory for
establishing the shape functions and thereby mncluding
transverse shear effects for the simulation of rotor
systems. He has compared the solution obtained from the

fimte element method with the classical closed form
Timoshenko beam theory analysis for nonrotating and
rotating shafts.

Lee and Tei (1988) have applied modal analysis to
contimuous rotor systems with various boundary
conditions which include 1sotropic and amsotropic natural
boundary conditions. They have determined the whirl
speeds and mode shapes, backward and forward of a
rotating shaft for spin speeds and boundary conditions
vary and have also calculated the unbalance responses
by using modal analysis. The effects of asymmetry in
boundary system  dynamic
characteristics were also investigated.

Jei and Lee (1992) have performed modal analysis of
an asyminetrical rotor-bearing system which consists of
asymmetrical Rayleigh shafts, asymmetrical rnigid disks
and 1sotropic bearings. They have developed a solution
method for the vibration analysis of a rotating uniform
asymmetrical shaft which can determine the whirl speeds
and mode shapes of the uniform asymmetrical shaft.

Cho1 et al. (1992) have derived the equations of
motion of a flexible rotating shaft by ntroducing
gyroscopic moments describing the flexural vibration in
two orthogonal planes and the torsional vibration of a
straight rotating shaft with dissimilar lateral principal
moments of mertia and subject to a constant compressive
axial load. They have also presented an approach for
calculating correctly the effect of an axial load for a
Timoshenko beam based on the change in length of the
centroidal line.

Han and Zu (1992) have analyzed a spinning
Timoshenko beam subjected to a constant moving load

conditions on the

Corresponding Author: Mahesh Chandra Luintel, Institute of Engineering, Department of Mechanical Engineering,
Pulchowk Campus, Tribhuvan University, Nepal
1239



J. Eng. Applied Sci., 14 (4): 1239-1246, 2019

using a modal expansion technique and have determined
the dynamic quantities such as natural frequencies, mode
shapes and system response. Numerical simulations were
also performed to demonstrate the characteristics of the
response.

Han and Zu (1993) have studied the dynamics of a
simply supported, spinming Timoshenko beam subjected
to a moving load using a modal analysis techmique. They

have shown that the simply supported spinning
Timoshenko beams possess two paws of natural
frequencies. Closed-form expressions for natural

frequencies and the system transient response were
presented using this simplified theory.

Lee (1995) has analyzed the dynamic response of a
rotating shaft subject to axial force and moving loads by
using Timoshenko beam theory and the assumed mode
method. He has derived equations of motion in matrix
form by using Hamilton’s principle and has investigated
the mfluences of the rotational speed of the shaft, the
axial speed of the loads and the Rayleigh coefficient and
compared with the available results.

Lee and Yun (1996) have analyzed the effect of the
direction of application and magnitude of loads on the
stability and natural frequency of flexible rotors subjected
to non-conservative torque and force. They have
derived the stability criterion from the energy and
variational principle and a general Galerkin method in
which admissible functions were used for numerical
analysis.

Mealnson and Zu (1998) have performed vibration
analysis of an internally damped rotating shaft using
Timoshenke beam theory with general  boundary
conditions. They have derived the equations of motion
mcluding the effects of internal viscous and hysteretic
damping and have obtained exact solutions for the
complex natural frequencies and complex normal modes
are six classical boundary conditions.

Wong and Zu (1999) have studied the dynamic
behaviour of a simply-supported spmning Timoshenko
shaft with coupled bending and torsion. They have
performed the analysis by transformmg the set of
nonlinear partial differential equations of motion into a set
of linear ordinary differential equations. They obtamned
analytical solution for the set of time varying ordinary
differential equations in terms of Chebyshev series.

Fung and Hsu (2000) have formulated govermng
equations for the rotating flexible-Timoshenko-
shaft/flexible-disk coupling system by mtroducing the
kinetic and strain energies and the virtual research done
by the Eddy-current brake system using Hamilton’s

principle. They have found that the Eddy-current brake
system can be used to decrease speed and suppress
flexible and shear vibrations simultaneously.

Huai-Liang (2002) has presented the dynamic
simulation for an axial moving flexible rotating shafts
which have large rigid motions and small elastic
deformation. He has derived the equations of motion and
associated boundary conditions using Hamilton principle
and has obtained the solution is obtained by using the
perturbation approach and assuming mode method. He
has also investigated the influence of the axial rigid
motion, shear deformation, slenderness ratio and rotating
speed on the dynamic behaviour of Timoshenko rotating
shaft.

Sinha (2005) has studied the dynamic response of a
Timoshenko beam under repeated pulse loading. He has
derived the basic dynamical equations for a rotating radial
cantilever Timoshenko beam clamped at the hub in a
centrifugal force field. Rayleigh-Ritz method with a set of
sinusoidal displacement shape functions has been used
to determine stiffness, mass and gyroscopic matrices of
the system analytically. Transient response of the beam
with the tip deforming due to rub has been discussed in
terms of the frequency shift and non-linear dynamic
response of the rotating beam.

Salarieh and Ghorashi (2006) have analyzed the free
vibration of a cantilever Tinoshenko beam with a rigid tip
mass. They have shown that the beam can be exposed to
both torsional and planar elastic bending deformations.
They have solved the governing equation mumerically to
study the dependency of natural frequencies on various
parameters of the tip.

Ozsahin ef al. (2014) have presented an analytical
modelling and an analysis approach for asymmetric
multi-segment rotor bearing systems. They have obtained
sub-segment Frequency Response Functions (FRFs)
analytically and sub-segment FRFs obtained have been
coupled by using receptance coupling method. They have
shown that using analytical model and receptance
coupling, compared with FEM, reduces computational
time drastically without losing accuracy.

Bhaskar and Saheb (2015) have solved the problem of
large amplitude free vibrations of a umform shear flexible
hinged beam at ligher modes with ends immovable to
move axially. They have compared numerical results
obtained with those obtained through fimte element and
other continuum methods for the fundamental mode and
have found close to each other.

Mirtalaie and Hajabasi (2016) have performed the
linear lateral free vibration analysis of the rotor is
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performed based on the Timoshenke beam theory
including the effects of rotary inertia, gyroscopic effects
They have shown that the
system can be classified as the parametrically excited

and shear deformations.

systems because of the mutual interaction of shear and
Euler angles which leads to some variable coefficient
terms appeared in the kinetic energy of the system. They
have mvestigated the free vibration behaviour of
parametrically excited system by perturbation method and
compared with the common Rayleigh, Tinoshenko and
higher-order shear deformable spinning beam models in
the rotordynamics.

Most of the earlier papers have focused the dynamic
response of a flexible shaft with reference to inherent
systemn parameters such as nonhomogeneity, asymmetry,
inextensionability, etc. or
surroundings such as rub impact or effects of bearing

mtervention from the

properties. This study focus mamnly on the dynamic
response of the shaft of a system consisting of a rigid
disk on a flexible shaft which can used to study the
behaviour of a Pelton turbine and its assembly.

MATERIALS AND METHODS

Problem formulation: Consider a rigid disk attached to a
flexible shaft with a constant spin speed of Q as shown in
Fig. 1. The axes x-z are chosen such that x 1s along
longitudinal direction of the shaft, y is along transverse
direction of shaft on the horizontal plane and z is along
the transverse direction of the shaft on the vertical plane.
Similarly, transverse displacements of any point of the
shaft along horizontal and vertical directions are
respectively v(x, t) and w(x, t). For the horizontal shaft
Pelton turbine water jet acts along the vy direction.
Similarly, rotations of any pomt of the shaft about v and
7 axis are respectively ¢p(x, t) and Ji(x, t). Kinetic energy of
the Timoshenko shaft is given by:

|- B
T, = —pA|vdx+—pA|Wwdx+
- Lo
1 L 1 L L
—pA92jvzdx+—pAszw2dx+pAQjWde—
2 0 2 0 o

(1)

L 1 L_ 1 L
pAQj\'dex+EpIJ¢dx+EpISjljJde-

0 o o

1 k 1 L
—pl (P [odx-=pL 2% [yidx
5Pl !¢ 5Pl {w

Similarly, kinetic energy of the rigid disk can be
expressed as:

z

L

Fig. 1: Shaft-disk assembly
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The strain energy of the shaft due to bending and
shear deformation is then given by:

1 L PP | (.
U, —EEISE[¢dx+EEIS_D[(qf) dx+5kAG_n[(v) dx+
1 : 2 1 r 5
—KAG (W) dx+_KAG [¢7dx+ 3
2 0 2 0

%MGijzdx-Mij'q) dx-kAGljw‘wdx
0 0 o

Work done by the impact of jet is given by:

W, = F(t)(V)X:L (4
2
Then, Lagrangian is given by:
L=TU (5)

Then, applying Hamilton’s principle, equations of
motion and associated boundary conditions are obtained
as:

L L
pAv-pAQZV-szQdeﬁ[x-z}v-MdQZS[x-]
(6)

v—2MdQB[X—2]W-kAGv+kAG¢'-F(t)6[X-2J =0
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[{kAGv‘-kAGq)} Bv} =0 (7)
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Using boundary conditions for the simply supported
shaft which obviously satisfy the boundary conditions
givenby Eq. 7,9, 11 and 13:

vix t)= Z'\fn(t)sin(?J (14)
W(X,t)=ZWn(t)[Im;(J (15)

o(x. t)zq)n(t)cos[nnx] (16)

L
w(xt) an(t)oos[?] a7

Using orthogonality conditions, equations of motion
for each mode can be expressed as:

MV, (£)-C,W, ()+K,V, (1)-R.Q, (t)-F () =0 (18)

M W, (t)+C V (t)+K, W, (t)-Py, (t)=0 (19

IO, (1) +Kt, @, (t)-P,V,(t)=0 (20)
Inan (t)Jthann (tj-Pan(t):() (21)
Where:
M, = LpAL+M,sin? [m‘} (22)
2 2
C, = pALO+2M,Qsin’ (%) (23)

1 1
K, = ——pALQZ-MdQZSinz[E}-—kAannz (24)
2 2 ) 2L

P = %kAG nn (25)
E =F (t)sin[ngj (26)
1
I = EDISL+pthd0032 [n—;} (27)

Kt, = lpISLQZ-5-pthdQZcos2 {H}-

: (28)
1ELn‘n’
2 L

+lkAGL
2

Rearranging Eq. 20 and 21 for @,(t) and P (t),
respectively:

@, ()= (1)- 02 W, (1), (1) B (1) 29)
P, (6= T () S (W () (0

Substituting @,(t) and P (t), respectively into Eq. 18 and
19:

! d*w, (t
P MoV C, W j*{ln K, +KtnMn}

poodt* e dtf > 3

2

d*v, (t)—Ktn C, dw, (t)+ K, K, B bV (1)- (31)
dt? P dt P,

Kt I, d

~F (t)'l?"y{ﬂ(t)}zo

P

1242



J. Eng. Applied Sci., 14 (4): 1239-1246, 2019
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Equation 31 and 32 can also be expressed m sumpler forms
as:

4 3 2
RGN AO IR ACIELACH
dt? dt’ dt? dt (33
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4 3 2
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dt dt dt (34
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2
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M

Solution for free response: For free vibration analysis,
substituting F(t) = 0, Eq. 33 and 34 reduce to:

a*v (t "W, [t d*v_(t
r:;()-o”ln n}( )+(x'2n nz( )_
dt dt dt 41)
aw, (1)

hn +a,, V, (t)=0

n

4 3 2
d'W, () +a, d Vn(t)+a2 d'W, (1),
dt* toat *at? (42)
dv,_(t
O“Sn ﬂ( )+a‘4nwn (t):O

Substituting:
V(1) = Ve 3

and:
W, (1) = W,e™ (44

into Hyg. 41 and 42, the characteristics equation of the
system
parameters as:

can be obtamed m terms of system

8 Z é 2 4
Sn+(aln +2(X,2n)sn+(20‘.,1n0‘.,3n +(X,2n+2(x,4n )SnJr (45)

2z 2 2 _
(2(1'211(1'4 +0"3n )Sn +a"4n B 0

Equation 45 can also be expressed as a fourth order
polynomial equation by substituting s> = A,

7‘*:+(0'~21n+20'~2n )7‘*3+(20’~1n0~3n +C("§n +20,, )7‘*3+ (46)

2 -
(ZCLZnC(‘él +a:in )hn +a4n =0

Equation 46 gives four roots of A, among which f2, and 4,
give natural frequencies for forward and backward whirl
for the mode n and fi, and &, have very high values
and are quite far from the operating speeds.

Solution for forced response: In this study, forced
response of the Pelton turbine unit due to impact of water
jet is studied. Tangential force provided by the water jet
on the runner wheel can be approximated a series of
periodically appearing pulses as shown i Fig. 2
where, t-t, ( = t,-t; = t;-t; = ,...,) 18 the duration of each
pulse which 1s proportional to the bucket thickness to the
circumference of the equivalent runner wheel and T is the
peried of one revolution of the runner wheel.

Since, the force exerted by the water jet is periodic but
non-harmonice, 1t can be converted mto harmonic terms by
using Fourier series expansion (Kreyszig, 2011) as:

F(t) = ocﬁi {ancos[zn_ﬂqﬂjnsm[ﬂtﬂ {47)

n=1 T T
Where:
2'E
=Z[F(t)dt (48)
g T'n[ (t)
o ljF(t)COS{zn—ntjdt (49
oty T
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F®

o totaty

Fig. 2: Pulses of force due to water jet on Pelton turbine

(30)

Substituting F(t) from Eq. 47 mto Eq. 33, steady state
response of the system can be determined.

RESULTS AND DISCUSSION

To present meaningful mterpretations of the result
numerical analysis is carried out by using the following
values of system parameters (Table 1).

Numerical results for free response: By substituting all
values of parameters into Eq. 46, the natural frequencies
corresponding to backward whirl and forward whirl are
determined. This can be presented in the form of Campbell
diagram as shown n Fig. 3.

Natural frequencies of each mode corresponding to
zero spin speed are the natural frequencies of first three
modes of the sumply supported Timoshenko beam. As the
spin speed increases critical speed for backward whirl of
each mode decreases whereas the critical speed for
forward whirl for each mode increases. At lower speeds
bending stiffness will have ligher value than the stiffness
due to centrifugal effect (centrifugal stiffening). During
backward whirl centrifugal stiffening will act opposite to
elastic restoring force and therefore critical speed for
backward whurl decreases with the increase in spin speed
as shown in Fig. 3. Dunng forward whirl centrifugal
stiffening will act in the same direction to elastic restoring
force and therefore critical speed for forward whrl
increases with the increase in spin speed as shown
m Fig. 3.

The difference between the critical speeds for the
forward whirl and backward whirl for a given
operating speed 1s higher for the first and third
modes of vibration whereas less for the second mode of
vibration.

5
e
é_ 25 M &mode P T |
- — — IstmodeBWY. i i i
) 20 —sa— 2nd mode Fy
= e 2ndmode BW i i
O 15 —#— 3rd mode F\f

101~ 4— 3rdmodeBW o i

0 500 1000 1500 2000 2500 3000
Spin speed (rpm)

Fig. 3: Campbell diagrams for first three modes
Table 1: Parameters of the system
Parameters Values
Density of shaft material (o) 7860 (kg/m’)
Cross-sectional Area of the shaft (A) 0.8042x10° (m®
Length of the shaft (L) 0.52 (m)

Modulus of Elasticity of shaft material (E)
Area moment of Tnertia of the shaft section (T,
Polar moment of area of the shaft section (J,)

202+1¢° (GPa)
5.1472x10% (m®
1.0204x107 (m™

Density of runner material (p,) 8550 (kg/m’°)
Mass of rurmer wheel (M) 10.564 (kg)
Thickness of rurmer (h) 35 (mm)

Area moment of Tnertia of the disk (To)
Polar moment of area of the shaft section (J,0)
Shear correction factor (k)

0.5527<10" (m®
0.11053x10% (m*)
0.9

Numerical results for forced response: Steady state
response of the system for transverse vibrations in
vertical and horizontal directions are determined by
considering the effects of first three modes and up to the
fifth harmomics of the Fourier series representation of the
jet force. The obtained responses v(x, t) and w(x, t) are
presented in graphical form as.

Substituting x = L/4, into the responses obtamed, the
steady state response for the transverse vibration of the
shaft at its quarter length is determine and which can be
presented in the form response plots as shown in Fig. 4
and 5.
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Fig. 4: Transverse displacement of shaft at x = L/4 mn
horizontal direction for £2 = 1500 rpm
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Fig. 5: Transverse displacement of shaft at x = L/4 mn
vertical direction for € = 1500 rpm
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Fig. 6: Transverse displacement of disk in horizontal
direction for € = 1500 rpm

Similarly, substituting x = L/2, the steady state
response for the transverse vibration of the shaft at the

x107
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o o o o o o o o o o o
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Fig. 7. Transverse displacement of disk in
direction for 1 = 1500 rpm

mid length (at which the disk is attached) 13 determined
and which can be presented in the form response plots as
shown in Fig. 6 and 7.

Form Fig. 4-7, it is found that the vibration amplitudes
in y direction 1s significantly higher than that mn the z
direction. Higher vibration amplitude in y direction 1s due
to the impact of jet. The vibration response in z direction
is almost sinusoidal throughout the length of the shaft.
The vibration response in y direction 1s almost sinusoidal
in the region far from the disk and it has distorted form in
the region near the midspan of the shaft or disk
location.

CONCLUSION

In this study, dynamic behaviour of the Pelton
turbine is studied by modelling it as a rigid disk attached
on a Timoshenko shaft The governing equation of the
system for bending vibrations in two transverse
directions are found to be coupled system of differential
equations. Performing free vibration analysis, the critical
speeds of the system for an operating speed of €2 = 1500
rpm for the first three modes are found to be 2787 rpm,
30821 and 36129 rpm for the backward whirl and 5786,
31746 and 39124 rmpm for the forward whirl,
respectively.

For the forced vibration analysis, the force provided
by the water jet is approximated as s Fourier series up to
the fifth harmonic components. Then steady state
response for bending vibration of the system 1s
determined by applying superposition principle. The peak
amplitude of bending vibration at the midspan of the shaft
{disk location) in the direction of jet for a operating speed
of Q0 =1500 rpm is found to be 73 pm. Similarly, the peak

1245



J. Eng. Applied Sci., 14 (4): 1239-1246, 2019

amplitude of bending vibration at the midspan of the shaft
(disk location) in the vertical direction for an operating
speed of Q = 1500 rpm 1s found to be 0.21 pm.
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