
Generating Analytics from Web LOG

1Vempaty Prashanthi, 2Srinivas Kanakala and 2Subhash Parimalla
1Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India
2VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India

Key words: Big data, HDD’S, web log, MapReduce,
Hadoop

Corresponding Author:
Vempaty Prashanthi
Gokaraju Rangaraju Institute of Engineering and
Technology, Hyderabad, India

Page No.: 3503-3508
Volume: 15, Issue 20, 2020
ISSN: 1816-949x
Journal of Engineering and Applied Sciences
Copy Right: Medwell Publications

Abstract: Modern engineering incorporates
clevertechnologies in all factors of our lives. Smart
technologies are generating terra bytes of log messages
every day to record their status. It is crucial to research
these log messages and present usable records (e.g.,
patterns) to directors, so as to manipulate and reveal those
technology. Patterns minimally represent large
corporations of log messages and enable the
administrators to do further analysis, along with anomaly
detection and event prediction. Although, patterns exist
typically in automatic log messages, spotting them in
large set of log messages from heterogeneous resources
without any prior information is a widespread
undertaking. We propose a big data using Hadoop that
extracts high pleasant styles for a given set of log
messages. Our approach is fast, memory efficient,
accurate and scalable. Hadoop is implemented in
map-reduce framework for disbursed platforms to
procedure hundreds of thousands of log messages in
seconds. It is a robust approach that works for
heterogeneous log messages generated in a wide style of
systems. Our technique exploits algorithmic techniques to
limit the computational over-head based totally on the
truth that log messages are continually routinely
generated. We examine the performance of Log-Mine on
hugeunits of log messages generated in commercial
applications. It has efficiently generated styles which
might be as exact as the styles generated by genuine and
un-scalable method whilst achieving a 500 per speedup.

INTRODUCTION

In the present world data analysis is a challenge in the
era of varied inter disciplines though there is a
specialization in respective disciplines. In other words
effective data analytics helps for analyzing the data for

any business system. But it is big data which helps and
accelerates the process of analysis of data paving
way for the success of any business intellectual system.
With the expansion of the industry the data of the industry
also expands. Then, it is increasingly difficult to handle
the huge amount of data that’s get generated no

3503

J. Eng. Applied Sci., 15 (20): 3503-3508, 2020

matter what the business is like range of fields from social
media to finance, flight data, environment and
health.

The challenge of big data is how to use it to create
something which is valuable to the user. It can be
gathered, stored, processed and analyzed it to turn the raw
data to support decision making. Big data is depicted in
the form of a case study for analyzing web log data using
Hadoop. These log files are very large and can have a
complex structure. Although, the process of generating
log files is straight forward but these log files are more
error prone. This often leads to a situation when these log
files generated continuously and occupy valuable storage
on the storage devices but nobody uses them and utilizes
enclosed information. This can analyze different kinds of
log files such as E-mail logs, web logs, Firewalls log,
server logs, call data logs etc. It can also be used in the
concept of network coding[1, 2]. Clusters using network
coding[3], to find energy efficient path in network[4].

Big data is a term that is used for storing and
processing large volumes of data (structured and
unstructured) which helps a business in a regular or daily
basis. Big data mainly consists of 5 v’s-volume, velocity,
variety, veracity and value. Big data is not concerned with
the amount of data but how efficiently it can processes
that data and extract the required information. That
extracted information or insights can help the
organizations in better decision making and
management.

When a web user surfs a specific web page or
website, the server records the small amounts of it within
the web access log format. In the web access request log
you will see the types of files users measure accessing the
situation from wherever the request has been created and
alternative data like what browsers they are using and
device access points. An access log could be a list of all
the entries users have requested from an internet website.
Such log files measure semi-structured data that is so hard
to store, method and analyse visitors or accessed person’s
previous information from a warehouse system.

Literature review: By Keogh and Kasetty[5] and
Ankerst et al.[6] the researchers have clearly reasoned why
MapReduce is the choice for log processing rather than
RDBMS. Researchers have showed various join
processing techniques for log data in map-reduce
framework. This research, along with Blanas et al.[7],
greatly inspired us to attempt clustering on massive log
data. In by Ding and Zhou[8] and Eltahir and Dafa[9] the
authors describe a unified logging infrastructure for
heterogeneous applications. Our framework is well suited
to work on top of both of these infrastructures with
minimal modification. In HPC (High Performance
Computing), logs have been used to identify failures and
troubleshoot the failures in large scale systems[10]. Such
tools majorly focus on categorizing archived log messages
into sequence of failure events and use the sequence to
identify root cause of a problem.

An automated log analyzer must have one component
to recognize patterns from log messages and another
component to match these patterns with the inflow of log
messages to identify events and anomalies[11, 12]. Such a
log message analyzer must have the following desirable
properties.

No-supervision: The pattern recognizer needs to be
working from the scratch without any prior knowledge or
human supervision. For a new log message format, the
pattern recognizer should not require an input from the
administrator.

Heterogeneity: There can be log messages generated
from different applications and systems. Each system may
generate log messages in multiple formats. An automated
recognizer must find all formats of the log messages
irrespective of their origins.

Efficiency: IoT-like systems generate millions of log
messages every day. The log processing should be done
so, efficiently that the processing rate is always faster than
the log generation rate.

Scalability: Pattern recognizer must be able to process
massive batches of log messages to maintain a cur- rent
set of patterns without incurring CPU and memory
bottlenecks (Fig. 1).

The existing system[13] uses “Relational Data Base
Management System” (RDBMS). A RDBMS is a type of
Database Management System (DBMS) that stores the
data or tuples in the form of rows and columns. Relational
databases are more powerful as they require less number
of assumptions to know how the data can be drawn out
from the specific database. As a result, the same database
can be viewed in many different ways or in different
perspectives.

The RDBMS had been the one of the best solution for
all the things the database requires. RDBMS uses
Structured Query Language (SQL) to store, query, update
and delete the contents in that specific database. However,
the volume and velocity of this raw data have changed
drastically in the past few years. It’s continuously
increasing every minute by minute.

Limitations of using RDBMS for analysis: The size of
data has been increased rapidly to the range of pet bytes
where one pet byte = 1.024 terabytes in number. Here, the
RDBMS cannot handle large amounts of data. To address
this issue, RDBMS added more number of CPUs to the
DBMS to increase its capability.

Another limitation is that the majority of the
data that comes from social media, audio, video is in a
semi-structured or unstructured format. However, the
RDBMS cant process these unstructured data. To handle

3504

J. Eng. Applied Sci., 15 (20): 3503-3508, 2020

Fig. 1: Extracting log patterns for a given set of logs

such a huge amount of data high velocity is required.
RDBMS doesn’t support the high velocity data because it
is designed not for the rapid growth but for the study data
growth. Even if RDBMS tries to store and process these
data, it may turn out to be much expensive.

Proposed system: The proposed gem is by using
“HADOOP Ecosystems”. Big data is a term used for large
data or datasets that are so large that normal processing
applications cannot handle it. Big data is a phrase used to
mean a massive volume of all structured, semi structured
and unstructured data. The data is generating at a rapid
rate and in different number of formats that we cannot
handle them. The social networking and mobile are the
one contributing the highest amount of data generation.
These above factors have progressed towards the term
“big data”. With the fast emergence of these data,
traditional data processing techniques are unable to catch
up with them. These factors have contributed for the
adoption of big data. To know why big data is much
better than RDBMS for data analytics, we have to know
the advantages of big data for data analytics.

Advantages of using Hadoop for analytics:
C Identify the main causes of failure
C Processing large volumes of data and extracting

insights
C Understanding the usage of insights developed
C Understanding the usage of marketing process

through data driven process
C Offering discounts or offers to the customers based

on their buying habits
C Improving the relationships between customer and

vendor

C Re evaluating the risk associated with that business
C Enhancing the experience of customer
C Enhancing the interactions or values for both online

or offline customers

System architecture: MapReduce has become the most
frequently used framework for processing of huge
amounts of structured or unstructured data stored in
Hadoop cluster. It was designed by Google to provide the
correspondence and reduce the fault tolerance of data.
MapReduce processes the large data in the form of key
value pair. We can choose the key value pair based on our
choice. These key value pairs are used for MapReduce
process as our system is not static. For static systems
columns are used for analysing the data. MapReduce API
will furnish the subsequent options like instruction
execution, parallel processing of huge amounts of data
and high availability. MapReduce work flow undergoes
different stages which stores the output in HDFS with
replications at the end. A Job tracker checks all the map
reduce jobs which are working on Hadoop cluster. A
Job tracker plays a crucial role in scheduling the jobs and
keeps track of every map and reduces jobs.
MapReduce contains two processing stages map stage
and reduce stage. Between these two stages there is one
more stage called intermediate stage which takes the
input from the mapper perform shuffling. Sorting and
combining (Fig. 2). Three phases exists in this
system. Mapper phase 2. Intermediate phase 3. Reducer
phase.

Mapper phase: Mapper phase gets the input values from
the record reader. The record reader is responsible to send
the key value pair to the mapper. The input received by

3505

J. Eng. Applied Sci., 15 (20): 3503-3508, 2020

Fig. 2: MapReduce frame work

the mapper is spit into key value pairs. Based upon the
keys and partition constraints input is distributed to the
specified reducer. The output generated is also a set of
key value pairs. This is termed as intermediate key value
pair.

Intermediate phase: This phase comes in between the
map and reduce phases. In this phase many operations are
done based on the results required. In this phase, the same
key values from different mappers will get into one
mapper. Operations like shuffling, sorting and combing
are done in this phase. It uses the Round Robin algorithm
to write the intermediate key values pairs into the local
disk.

Reducer phase: This is the second stage of the
MapReduce data flow. In this phase, it receives the input
from the practitioner and combiner. The reducer’s logic
will begin with the operations performed by the mapper.
It produces the output files like part files which
contains the actual output of the analysed data. Each
time when the job is run reducer shows the number of
reducers needed for the job for execution. As the
reducer performs parallel processing and therefore,
the performance and throughput of system is
increased.

MATERIALS AND METHODS

Hadoop Distributed File System (HDFS) is used to
store huge data sets or data and stream these informational
indexes at a very high speed transfer to other applications.
HDFS facilitates easy access of data. As a single machine
cannot hold gigantic or large information, the records of
this data are stored in different machines. This data is
stored in a redundant style to safe guard the data for any
attacks or occurrence of disappointments. HDFS likewise
makes applications accessible to parallel processing
(Fig. 3).

Implementation:
C Step 1: Create a webpage and host the webpage using

bluehost hosting service
C Step 2: Extract the web log data from the webpage
C Step 3; Process the raw web log data to obtain a

cleaned data set (CSV format)
C Step 4: Create a new directory with same name

weblog analysis in the cluster
C Step 5: Write the MapReduce program in Eclipse
C Step 6: Create a jar file and copy the jar file to local

edge node using WinScp
C Step 7: Login into the cluster using putty and copy

the input file from local to cluster
C Step 8: Run the mapreduce program
C Step 9: Result is seen through command interface

3506

Client

program

Input
file

DFS
Split 1

Split 2

Split 3
Split 4

Split 5

Submit job

M1

Ma

RAInput format

Parti
Comb

Task
tracker

Task
tracker

M2

M3

Task
tracke

ap()

AM

ition()
bine()

Region

Region 2

hase

Region 1

Region 1

Region 2

Region 2

Job
tracker

k
er

1

2

Task
tracker

Ou
fi

R1
D

Awign task
Co-ordinate map a

Provide job pr

R2

Task
tracker Score

Read Reduce(

Output for

utput
ile 1

DFS

k trackers
and reduce phase
rogram info

1

()
Output
file 2

rmat

DFS

J. Eng. Applied Sci., 15 (20): 3503-3508, 2020

Select a website

Extract web log

Load the extracted le into Hadoop cluster

Perform MapReduce job

Get the results

f i

600

500

400

300

200

100

0

R
un

ni
ng

 ti
m

e
(s

ec
)

0 2 4 6 8 10 12

No. of logs (millions)

Sequential
MapReduce

700

600

500

400

300

200

100

0

R
un

ni
ng

 ti
m

e

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

No. of workers

Sequential
MapReduce

700

600

500

400

300

200

100

0

R
un

ni
ng

 ti
m

e

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

No. of patterns

Sequential
MapReduce

Fig. 3: Process flow

Fig. 4: Comparison of running times WRT No. of logs

RESULTS AND DISCUSSION

In this experiment, we compare sequential and map
reduce technologies. We generate synthetic data by
changing number of log entries (10 million default) and
number of patterns (1500 default). We change the number
of map-reduce workers (8 default) to understand
scalability. Each worker has 1 GB of memory and a
single-core CPU. As shown in Fig. 4, the execution time
of the MapReduce implementation grows slowly
compared to the growth of the sequential implementation.
MapReduce implementation reaches up to 5 X speed-up
by using 8 workers compared to the sequential
implementation. Note that we have a fixed number of
patterns in this experiment. Our MapReduce
implementation can handle millions of logs in few
minutes because the number of patterns does not grow at
the same rate as the number of logs grows in real world
applications. Figure 5 shows that with increasing number
of patterns, the execution time of both sequential and

Fig. 5: Comparison of running times WRT No. of patterns

Fig. 6: Comparison of running times WRT No. of workers

MapReduce implementation consistently grows. In
Fig. 6, we show that doubling the number of workers
reduces the running time by 40%.

CONCLUSION

Nowaday’s storing the information has turned into a
major issue. Traditional database systems do not support
large volumes of data. Therefore, a conventional database
system called Hadoop is used for managing huge volumes
of data. Number of elements and changed include in
enormous information like web based life and cloud based
life. These mechanical changes are putting weight on the
appropriation of huge information. Big data is vastly
improved than RDBMS for information investigation.
From the outcomes, we can analyze diverse sorts of IP
addresses used time stamps, number of references by
every client to the site and locate the top N users. Based
on number of bytes used information like most visited
user can be identified. False snaps and unknown IP
Addresses can be blocked giving a safe domain to clients.

3507

J. Eng. Applied Sci., 15 (20): 3503-3508, 2020

REFERENCES

01. Prashanthi, V. and K. Srinivas, 2019. Identification
of opportunities for coding in a network. Int. J.
Recent Technol. Eng. (IJRTE.), 7: 140-144.

02. Prashanthi, V., D.S. Babu and C.V. Rao, 2018.
Network coding aware routing for efficient
communication in mobile ad-hoc networks. Int. J.
Eng. Technol., 7: 1474-1481.

03. Kanakala, S., V.R. Ananthula and P. Vempaty, 2014.
Energy-efficient cluster based routing protocol in
mobile ad hoc networks using network coding. J.
Comput. Networks Commun., Vol. 2014,
10.1155/2014/351020

04. Srinivas, K., A.V. Reddy and N. Autha, 2014.
Connected dominating set-based broadcasting in
mobile ad-hoc networks using network coding. Int. J.
Applied Eng. Res., 9: 30279-30301.

05. Keogh, E. and S. Kasetty, 2003. On the need for time
series data mining benchmarks: A survey and
empirical demonstration. Data Mining Knowl.
Discovery, 7: 349-371.

06. Ankerst, M., M.M. Breunig, H.P. Kriegel and J.
Sander, 1999. Optics: Ordering points to identify the
clustering structure. ACM SIGMOD Rec., 28: 49-60.

07. Blanas, S., J.M. Patel, V. Ercegovac, J. Rao, E.J.
Shekita and Y. Tian, 2010. A comparison of join
algorithms for log processing in mapreduce.
Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data,
June 6-11, 2010, ACM, Indianapolis, Indiana, pp:
975-986.

08. Ding, C. and J. Zhou, 2007. Log-based indexing to
improve web site search. Proceedings of the 2007
ACM Symposium on Applied Computing, March
11-15, 2007, ACM, Seoul, Korea, pp: 829-833.

09. Eltahir, M.A. and A.A.F. Dafa, 2013. Extracting
knowledge from web server logs using web usage
mining. Proceedings of the 2013 International
Conference on Computing, Electrical and Electronics
Engineering (ICCEEE), August 26-28, 2013, IEEE,
Khartoum, Sudan, ISBN: 978-1-4673-6231-3, pp:
413-417.

10. Faloutsos, C., M. Ranganathan and Y. Manolopoulos,
1994. Fast subsequence matching in time-series
databases. Proceedings of the ACM SIGMOD
International Conference on Management of Data,
May 24-27, 1994, Minneapolis, MN., USA., pp:
419-429.

11. Lee, G., J. Lin, C. Liu, A. Lorek and D. Ryaboy,
2012a. The united logging infrastructure for data
analytics at Twitter. Proc. VLDB Endowment, 5:
1771-1780.

12. Lee, K.H., Y.J. Lee, H. Choi, Y.D. Chung and B.
Moon, 2012b. Parallel data processing with
MapReduce: A survey. ACM. SIGMOD Rec., 40:
11-20.

13. Rajachandrasekar, R., X. Besseron and D.K. Panda,
2012. Monitoring and predicting hardware failures in
HPC clusters with FTB-IPMI. Proceedings of the
2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum,
May 21-25, 2012, IEEE, Shanghai, China, pp:
1136-1143.

3508

