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Abstract: Transmission dynamics model for HIV/AIDS, along the line of Mckendrick-Forester age-structured
model 15 proposed with the natural mortality rate and the fertility functions assumed to be age depended, similar
to Doma, Gurtin-MacCamy definitions. The solutions to the governing equations are obtained and the steady
states are examined for their local stability. The model 1s further extended to study the case of constant mortality
rate and an exponential type of mteraction function. It 13 observed that the endemic steady exist and

asymptotically stable.
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INTRODUCTION

Expositions on the origin, Biological and transmission
mechanism of HIV/AIDS 1s in Castillo-Chavez ef al. (1991)
and Hethcotte and Ark (1992). However, there are three
known modes of transmission of HIV. These are sexual
contact with an infected person, direct contact with HI'V-
mnfected blood or fluid and lastly, transmission from an
infected mother to her child, called Mother Tto Child
Transmission (MTCT). However, in this research we
intend to examine both heterosexual and mother to child
modes of transmission of HIV using existing model
assumptions of proportionate mixing n an age-structured
epidemic models with a proposed exponential contact
function.

MODEL PARAMETERS AND FORMULATION

u(a, & (t))= Natural mortality rate

r(a) = Progression rate from HIV-infection to
AIDS

P (t,a) = Force of infection

o (a) = Disease induced mortality rate

€ = Probability of infecting the new bom with
HIV-virus

S(t,a) = Population size of the Susceptible
compartment of age a

It a) = Population size of the infected compartment
of age a

A(t,a) = Population size of AIDS, compartment of
agea

We assume proportionate mixing of the population
and that HIV-infected are not noticeable and are sexually
productive. They can give birth to new born. Also assume
that ATDS-infected are not reproductive, easily noticeable
and not sexually mteracted with. So that heterosexual
contact with AIDS-infected person 1s avoidable, for fear
of infection. Since, there is no care, for ATDS any infected
will surely die from the diseases, (Olowofeso and Weama,
2005). We assume that the natural mortality and fertility
rates are influenced by age mn line with Doma (2004),
assumption of age vital rates. Suppose, the heterosexual
active and interacting number of adult satisfies the
following,

Nt a)=S(t, a)+I{ at+A( a)

Then, the dynamics of the population compartment
can be described by the following partial differential
equations,

Si(ta)S,(ta)=-[uadta)+ptalsta(l)
L (ta), L (ta)= P (ta) 5 (ta)- [r(a)-p (a, & (ta)] L(ta) (2)

At,a)y A, (tba)=r(a) It a-a(a) At a) (3

S (0: a) = Sa (a)a I (03 a) = IU (a)a A (03 a) =AU (a)
N (0, a) =N, (a),

5(,0)= [ n(a,)[8(t,a) + (1 - e)l(t,a)]da )
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1(0,t) = sj;n(a,)l(t,a)da (5)

Bt,a) = M o
,[n N(t,a)da

Alt,ay=0

Where, k (a, 4) 1s the mteraction coefficient, defined as the
probability that a susceptible of age a interacts with an
mfected individual of age a and become infected, N (t) 1s
the total population of age a at time t. The total number of
susceptible and infected of age a are defined as,

S(t) = jﬂ“’ S(ta)da, I() = j: I(t,a)da,

P(t) = jﬂ“ Nit,a)da

The numbers of new born that are not HI'V -infected
per urt of time 13, S (0, t) and the number of infected new
bom that are HIV-infected through MTCT transmission 1s
I (t, 0). This means that all new born from susceptibles are
susceptible, but a fraction € of new bormn from nfected
parents are infected, through MTCT.

The natural mortality rate p (a) 1s assumed the same
for all susceptible and infectives and is a continuous
function of age and the disease induced death rate is
assumed non-negative contimuous function of age
a € (0, =). LetN (a), 0< a< T, (T is the maximum age) be the
density with respect to age of the total number of
mndividuals, where the population i1s n a stationary
demographic state, with equilibrium age density,

N(a) = * N exp( [ e, 81, HE

N = The equilibrium population size

The crude death rate satisfying

w* j; v(a)da =1

via) = exp(~ [ uie. 8(t.¢))dg

15 the survival function, defined as the proportion of
individuals who survive to age a. The stationary
population size at age can be represented as N (a) = u* N

v (a), with life expectancy

L= L‘” v(a)da,

1n line with Castillo-Chavez (1991). The basic reproductive
number of the infection 1s defined as,

R, = [ n(a,) Wa)da

Defining m (t,a )= S (t,a) + L (t.a) +A (t, a) and adding
the equations we obtamed the mckendrick-foerster age-
structured model,

m, (t,a)+m (t.a) = —uia,8(a)mt,a)
m(0,t) = j:n(a)m(t,a)da
m(0,a) =85, (a)+1,(a)+ A, (a)

The equation describing the disease dynamics, in
line with Mckendrick-Forester, MacCamy and Gurtin,
representation of the vital rates are,

St a)t+S,(ta)=-[p(@)+8@)+p(ta)Sta)

Li(t, @)+ L (t a)= P (t, a) S (4 a)- [r (a)-p (a) +
p@ @)L, a)

Ata)tAta)-r@lta-a@Alta)
S(0,2)=S,(a),1(0,a) =1L, (a), A (0, a) =A, (a)
N (0, 2) =N, (a)

8(1,0) = [ m(@)[S(ta) + 1-e)l(ta)da
1(0,t) = SI;n(a)I(t,a)da
Blta)=— [ k(a,a)I(t,a)da.p(t) = ["Nta)da

N(t)-?
A(t,0)=0

From Eq. 2.2, we define fraction of the susceptible,
HIV-infectives and AIDS as,

. _ILita)
L ita) = NG)

- S(t,a)
N(a)

=28 (7
N(a)

This has the effect that the dynamics of the
population vamsh from the populaton, with only
exception that the population age -density appears in the
equation for the per capital infection rate (Inaba, 1990).
Thus, the govermng equations are,
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s, (t,a)+s_(t,a)=—P(t.a)s(t,a)
i(t,a)+i,(t,a) =f(t,a)s(t,a)—r{a)(t,a)
z,(t,a)+ z, (t,a) =r{a)(t,a)

&)

S(0,a)=1,1(0,a)=2z(0,a)=0

The per capital force of infection 1s,
B(t,a) = j; kia,a)i(t,a)da

in line with Cushing (1994).

In this research, we consider, this system with the
initial conditions, s (a, 0)=s,(a),1(a, 0)=1(a), z(a, 0) =7
(a), where, s, (a) +1, (a), z,(a) =1 and r (a) = r, for all
individuals infected in T, compartment. Thus, for allt = 0,
we have

sta)+It,a)+tz(ta=1

The sclution to the goverming equation can be
obtained via characteristic line,

da _

1
dt
on which
B s acta) and
dt

" =[(a)s(t,a) —ri(t,a)

Where, a, s (t, a) and i (t, a) are defined by,

t+a,,ax>t
a= {
t-t,,

s(t,a) = s(O,an)exp{fI; Bis)dst, a >0
using s(0, a-t) =s(0,a,) =s(a—t),

a<t

s{a— t)exp{—J.:itB(s)ds}, axt
s(t,a) =1
s(tn,O)exp{f‘[: Bis)ds), a <t

i(0atie”  +e " _I.:_tB(T)s(t, Ddg a>t
itt,a)
i(t,,00e" " + e ﬁjﬂa Bost,T)dT, a<t

The renewal equations for the susceptible and
infectrive population are,
b(t) =s(t,0)=C*—qm(a)e™",
w(a) = o+ L‘” D(a)da-lj_t R)s(a —t) pla)dt, a >t

Where,

_D(a)i(0,a-t)da,
*=) pta)- exp{-[ Bitxit}, D(a) =n(a)N(a)

bi{t)=C*—qll(a)e™",
() = [ De@ji(t,,a)da + st,.0)
j; D(a)daj; B(T)exp H; B(T)dTidTdr,

a<t

i(t,0)=qe "m(a), a>t

i(t,0y=qe *[I{a), a<t

However, for practical purposes, we considered t > a
and our expressions for s (, a) 1 (t, a) and b (t) takes the
following forms,

s(t.a) = s(t;, 0)exp{-| is)ds)

i(t,a) =i{t,,0)e” " +s(t,,00e "

[} Bsmis)as, mia) = exp{- [ Brsdst
bit) =s(0,t) =C* —ql1(a)e "

i(t,0) =qgll{a)ye™"

The limiting population size for the compartments and
the birth rate b (t) when t > a are,
s(ta) = s(t,0)exp{~[ fis)ds},

R(s) = j: k(s,s)i(t,s)ds
b(t) =s(t,0) =C*
and i(t,0) =0

EXISTENCE AND LOCAL STABILITY OF
DISEASE-FREE AND ENDEMIC STATE

Let (s* (a), i* (a)) be the endemic steady state
solution for the Eq. (2) and p* be the force of infection at
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the steady and then the following steady state solution
are obtained in line with Diekmann and Kretzahman (1991)
and Doma (2004),

8* (a)=Dexp {- p*a), D=C* -T* (0) (9
1(a)=(01~ (0)+a[3 *y(a)yexpi-ra), 10)

a>0 yfa)= _L e“s*{(vidv

=1*(0e ™+ —B*D e P (g f—E* eP
T B —TI (1 1)
*(0) + B—Ce'ﬁ S
p*-
Per capital force of infection at the steady state is,

. i*(O)IU k,(a)N(a)da (12)

e j; wia)N(a)e "da
Where,
jﬂ"w(a)N(a)e'mda #1

The force of mfection 1s zero when 1* (0) 15 zero. In
that case the disease-free steady state exists. Since
vertical transmission of the disease 1s assumed, the
mnfected new born nto the population, 1 (0) # 0 and the
expression for infectious P* is a positive constant,
satisfying,

B *
pr-r

B* > @(a)r,

- e 0

(13)

Where,

—ra

_ € 12 —B*a %
Wa)=—— . e ze T e

Thus, the endemic steady state (s* (a), 1* (a) ) exists.
Using the method in Castillo-Chavez et al. (1991) and
Hethcote and Ark (1992) we substitute the infective
population density 1* (a) mto the equation for the force of
mnfection and obtained Lotka type characteristic equation,

1=n K (@)e Ok, (a)e " daja,
n =s{0u”

(14)

Which has a positive solution, p*, provided that the
threshold condition 1s satisfied,
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1< ’I’]J.;kl (a)e*(fa“*’(a)ﬁ (J.Uakz(g)e‘;da)da _ RD (1 5)

Where, 1 = u*s (0)

With the force of nfection as positive solution of
Eq. 14. When the threshold is satisfied the steady
solution comresponds to an endemic steady state and
when the threshold is not satisfied the force of infection
is zero and the steady state corresponds to a disease-free
steady state. To have a sustamned endemic state for the
disease, the infectious force should be greater than the
progression rate from HIV to AIDS, as in Eq. 13. This will
allow for long incubation period for ATDS, which is the
target of HT V-infection intervention therapies. Since, r > 0,
p* # 0 and the steady state is an endemic steady state,
with its local stability determined by linearization of the
system m the immediate vicinity of the steady state.
Consider the following perturbations about the steady
state solution,

s(t,a) =s*(a)+s(a)’’
i(t,a)=i*(a)+i(a)e’’

Blt.a)y= p*

(15)

Substitution into Eq. 4 an solving for, & (a)and 1 (a)
gives the following equations

s(a) = D(0)e "+
I(a) —=i* (0)6—(13 +)a 4 B *D(O)J-Ua e_[@*_r)w_(p ) a]d([)
B =k (a)u” _[:kz (a)i(a)e *¥da,

¢(@) = [ ua)da

$*(0)=c—i*(0), i*(0)=mq
jﬂ“’ fla)e*@i* (a)da, m = u*N,

Di0) =s(0)—s*(0) =
“ma]”fa)e *iapda = -mak k - [ Fa)e “ita)da

Using the representation for 1 (a), we have,

Br =i [k, (e 10 da + DO

p* J'n kl (a)e*[{p +)atg(a)] (J.D kz (g)e*(ﬁ**r)adg
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We obtained the Lotka type characteristic equation,

1= on_[:kl(a)e’[('””)a*“’(aﬂ (_[Uakz(é)ef(ﬁ**');dg)da an
=-mgku*, D {0) =-mqk

It all roots of the Lotka type characteristics equation
have negative real part s, then all solutions of the form (9)
(10) tend to zero as p tend to infimity. For infection force
greater than zero, no non-negative solution can be found
that will satisfy the TLokta characteristic equation..
However, for trivial steady state p = 0 Eq. (16), reduces to
the form,

1= af k (@)e @@ [k, (a)e"da)da (18)

This will have a unique solution, p < O and p = 0, only
at the threshold.

To determine the local stability, of the steady of the
endemic steady state, we propose the contact function,

e, ifa<t
k(a) = { (1)

0 ifazt

Consistent with human sexual interaction behavior.
That 15 the more an individual aged the less his activity
level and also assumed natural mortality independed of
age, L say T < oo, 18 the maximum age. Using Eq. (19) we
find the characteristic equation and the value of p*. We
determine whether for these chosen values, the steady
state, (9-10) is an asymptotically stable endemic steady
state, in with the above expositions. From Eq. (18) we

B*:*(2+M*r)il ’(zﬂi—f)z— (20)
2 2V +r+u+m)

Equation (20} 15 zero only when,

have,

— — — 2 —
Ctpu-n 4 1 E+u-n
2 2N¥4H(+r+ u+mn
are both zero, which is not possible, since i, r and 1 are
not zero. The infection function 1s not zero, the steady
state Eq. 9 and 10 i1s not a disease-free steady state.

Equation 9 and 10 is an endemic state only when the
following holds,

2+ pu+rrf+4<8+6pur+4n-p-r

Where (2+ p-1)<0

Thus, the rocts are, B*, = a,, p*, = «,

1 1 [Br+6ur+4n —
0:1:—5(2+!.L—1‘)+5 4 12
1 1 [Br+o6ur+4n -
o, =—2+u-1)—=
’ 2( b 2V47u27r2

From Eq. (17) we have,

Where,

_ 2 to 240 -1
b (2+0, 1)

_ fl+2+o,tu)Zt+a, -1)
T (2+o, 1)

(22)

2

Where,
l=ngkp*, k= J: flayet“i{a)da

Since, p, are p, negative, Eq. (10, 11) will be reduced
to an endemic disease state, for any fluctuations about
the steady. The steady
asymptotically stable, for the assumed natural mortality

endemic exists and 1s

rate and interaction function. However, since our target 1s

the realization of the disease-free steady, where p*= 0

This 15 achieved from Eq. (20) whern,
C-&tewr-(dn-p'-4=0 (23)

Where,
r=4+2utA A= ou +24u 12 2D

Thus, for disease-free steady state,
r<p* (25)
While if the disease 1s endemic we would have p*<r.
CONCLUSION

We have examined both heterosexual and mother to
child transmission Dynamics of HIV-mfection in a
proportionate mixing population, with age depended
natural mortality rate and extended it to study non-age
depended mortality rate, in line with Gurtin and McCamy
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age-structured population with exponential activity
function. The studies shows that there exist an endemic
steady state for HIV, given B* » = 0 and is locally
stable,
depended natural mortality, with exponential interaction

asymptotically However, for non-age

function, the endemic state is found to exist, if the
following equations are satisfied,

2+p+ri+4<8r+6ur+4n-p’-r,
Where (2+ p-1)<0
Is asymptotically stable if Eq. (22) holds. While for
disease-free steady state Eq. (23-25) should hold.

since HIV/AIDS has
preventative measure such as total abstinence, from

However, no known cure,
heterosexual contact and use of condom should be
encouraged. This will reduced the interaction function
to zero and hence, the force of infection to zero,
leading to a disease-free steady state. Other drug
using therapies should also be encouraged to help
extend the mcubation period for AIDS so that infective
will have more years of productive life before developing
AIDS.
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