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Abstract: The nonparametric Kruskal-Wallis statistics (H-test) and its parametric counterpart, the one way
ANOVA (F-test) are two powerful statistics commonly used to compare k (>2) sample. The Monte Carlo
approached was used in this study to compare the performances of the two statistics especially when the

assumptions of normality and homogeneity of variance are violated. Data were generated from normal,
exponential and Poisson distributions. Tt was discovered that when the samples are from normal and Poisson
distributions, the F-test is more powerful than the H-test but the reverse is the case when they are from
exponential distribution. However, when the sample size increases to say =15, the two statistics perform equally

well in terms of their power irrespective of the distribution from which the samples are drawn.

Key words: Classical F-test, H-test, normal population, exponential distribution, poisson distribution, level of

significance

INTRODUCTION

A common problem in many areas of the application
of practical statistics 1s that of deciding whether several
samples are to be regarded as coming from the same
population. Often, the sample differ and the question is
weather such difference is as a result of differences
among the populations or that due to chance expected
among random variables. Two statistical methods of
dealing with this problem of comparing means of k (>2)
populations are the parametric one-way analysis of
variance (F-test) and the non-parametric H-test proposed
by Kruskal and Wallis (1952) and 1s therefore, commonly
referred to as the Kruskal and Wallis (1952) statistics.

The classical F-test is more stringent in the use
of assumptions than the H-test. Its most stringent
assumption 1s that i1t requures all samples to be drawn from
a normal population. Also, the measurement scale should
be at least interval. Other assumptions are that all samples
must be mutually independent and the homoscedastic of
variance (Daniel, 1990). The H-test does not require the
samples to come from normal population and the
measurement scale can be at least ordinal. In many
experimental situations, the normality assumption is not
very realistic and sometimes, the samples may not be
continuous though this is commonly assumed and the

classical approach of comparing the samples 13 often used
(Laan and Verdooren, 1987). This undoubtedly, may yield
a misleading result.

Many researchers have tried to look at the
performances of these two statistics in terms of their
strength and limitations. Laan and Verdooren (1987) are of
the view that where the experimental is not sure whether
the normality assumption 1s realistic for the classical
F-test, a non-parametric test should be used as according
to them, 1t 1s possible that the non-parametric test has a
larger power than its classical counterpart in this
situation. Rust and Fligner (1984) proposed a modification
to the H-test in comparing several samples and this they
contended requires fewer assumptions about the shape of
the population. Other researchers, who have commented
on the classical F-test and its non-parametric counterpart,
include Conover (1999), Hettmansperger and McKean
(1978), Puri and Sen (1971), Randles and Wolfe (1979),
Buringer et al. (1980) and Hollander and Wolfe (1999).

In this study, we investigate the robustness of the
classical F-test over the non-parametric H-test when the
assumptions of normality and homogeneity of variance
are violated under three different scenarios using the
Monte Carlo approach. The power function for each
scenario was computed at the sigmficance level (&) of
0.01, 0.05and 0.1.
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TEST STATISTICS FOR COMPARING K (>2)
POPULATIONS

The one way ANOVA (F-test): Let a random sample of size
n; be drawn from populationi (i=1, 2, ..., k). The resulting
random variables X, (i=1,2, ...,k j=1,2, ..., n)are
assumed to be normally distributed N (u,, ¢%). The linear
model of the form X; = p; + E; 15 usually used with
independent E, which are N (0, 0) (Laan and Verdoorer,
1987, Oyejola, 2003). The observations can thus be
classified according to a classification A with classes A,
A, .., Ay where the n, observations X; (i=1,2, ..., k)
belong to class A, For testing the null hypothesis H

u' == .. =, against its alternate H,: at least a pair of
W’s 1s unequal, the test statistics F = MSA/MSE 1s used,
where MSA = SSA/(k-1) and SSA, the sum of squares of

A equals:
S 53]

MSE =SSE/(¥'n, k)

and SSE, the sum of square error, equals

B g

i=l j=1

Under Hy, F~F (a, e) with ¢ = k-1 and

degrees of freedom.

The Kruskal-Wallis test (H-test): Let a random sample of
size 1; be drawn from populatoni1(1=1, 2, ..., k). The
resulting random variables X, (1=1,2, ... ,k;j=1,2, ..., m)
are assumed to come from populations with continuous
distribution function F,. The hypothesis to test is of the
form Hy: F; (x) =F, (x) = F(x). In applying the H-test, all the

observations will be ranked in increasing order of
magnitude with ranks 1, 2, ..., N. The H statistic is

N+1

i=1

where, R, is therank of X, (i=1, 2,
with the usual notation

Skj=1,2, ..., n)and

39

R, :Ele : Ei =R, /n,
i=1

ete. Details of the critical values of H for few samples with
each having <5 observations can be found by Daniel
(1990) and Iman ef al (1975). When n~« H has
asymptotically a Chi-square (") distribution with k-1
degrees of freedom (%’ (Il -1)).

Generation of random sample: The random samples used
for the aim of this study were generated from the normal,
exponential and the Poisson distributions using the SPSS
package. Four independent samples were generated from
the three distributions to make up three scenarios for the
study. Sample size of 2, 5, 10,15, 20, 25 and 30 were used
for the three scenarios expect that of normal where we
included sample size 8. Each sample size was replicated
100 to allow us compute the power function.

In the first Scenario, the normality and homogeneity
of variance assumptions were withheld. The means used
in generating the four mdependent samples were 10.0,
13.0,15.0 and 18.0, respectively with a common standard
deviation of 5. For the second scenario, where the
exponential distribution was used, the scale parameters
were takento be 0.2, 0.5, 2.0 and 5.0, respectively. By tlus,
both the normality and homogeneity of variance
assumptions were violated. In the third scenario, the
means for the Poisson distribution were also taken to be
respectively 10.0, 13.0, 15.0 and 18.0. With this, not only
that the two assumptions above were violated, the
variables so generated were not continuous.

RESULTS AND DISCUSSION

The classical F statistic and its non-parametric H
counterpart were applied to all the data generated in order
to determine if the samples can be said to have come from
the same populations. The number of rejections out of 100
replications for the three scenarios at the level of
significance () of 0.01, 0.05 and 0.1 are shown in
Table 1-3 while, the power functions computed for each
of the scenarios are presented in Fig. 1-9.

The results in Table 1 indicate that under the normal
distribution, the F-test rejects more often than the H-test
and as the level of significance of the test increases, the
number of rejections increases consistently for the two
tests. Forn = 15, the two tests perform equally mn rejecting
the null hypothesis except for when ¢ = 0.01. For the
results of the exponential distribution in Table 2, the
F-test does better than the H in its number of rejection
when n = 2. As n = 5, the H-test becomes more powerful
though the two test soon become equally powerful as
n = 10. This 1s consistent for all the a levels used.
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Table 1: Number of rejections out of 100 replications under the nommal
distribution
=001 o =0.05 =01

Sample size  F-test H-test  F-test H-test F-test H-test

02 2 0 11 0 22 1
05 17 11 36 35 54 49
08 43 32 73 o4 80 76
10 57 45 78 76 90 90
15 92 87 98 98 99 99
20 100 100 100 100 100 100
25 100 100 100 100 100 100
30 100 100 100 100 100 100

Table 2: Number of rejections out of 100 replications under the exponential
distribution
o=10.01 o =0.05 o=01

Sample size  F-test H-test  F-test H-test F-test H-test

2 10 0 23 0 34 9
5 33 53 70 89 86 97
10 98 99 100 100 100 100
15 100 100 100 100 100 100
20 100 100 100 100 100 100
25 100 100 100 100 100 100
30 100 100 100 100 100 100

Table 3: Number of rejections out of 100 replications under the Poisson
distribution

a=10.01 a=10.05 a=01

Sample size  F-test H-test  F-test H-test F-test H-test

2 3 0 17 0 37 7
5 44 21 73 66 81 81
10 88 87 99 96 99 99
15 100 100 100 100 100 100
20 100 100 100 100 100 100
25 100 100 100 100 100 100
30 100 100 100 100 100 100
12+ -» Fest
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Fig. 1: Power curve at ¢ = 0.01 using normal distribution

In the case of the Poisson distribution, all through
the levels of significance, the F-test is more powerful than
the H-test. But as n = 10, the two test statistics can be
said to have equal power.
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2: Power curve at ¢ = 0.05 using normal distribution
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3: Power curve at ¢ = 0.1 using normal distribution
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Fig. 4. Power curve at ¢ = 0.0]1 using exponential

distribution
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Fig. 5: Power curve at ¢ = 0.05 using exponential
distribution
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Fig. 6: Power cwve at o = 0.1 using exponential
distribution
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Fig. 7: Power curve at ¢ = 0.01 using poisson distribution
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Fig. 8 Power curve at ¢ = 0.05 using poisson distribution
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Fig. 9: Power curve at ¢ = 0.1 using POISSON distribution

The power curves in the Fig. 1-9 indicate that the
parametric F-test is more powerful that the non-parametric
H-test when n = 10. However, in the case of the
exponential distribution m Fig. 4-6, the non parametric
H-test is more powerful at all the levels of significance
considered.

CONCLUSION

The Monte Carlo study has revealed that when there
are a number of samples to be compared whether, they all
come from the same population, the parametric F-test
should be used when it is known that the samples are
from normal distribution. When they are known to have
come from the Poisson distribution, which 1s of the
discrete type and the experimental wants to use either of
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the tests for comparison, the F-test should be preferred.
However, when the samples are continuous but the
experimental 1s not sure whether the assumption of
normality and homogeneity of variance are valid, the
non-parametric H-test i3 to be considered for use. But
where the sample size is not small say = 15, any of the two
test will perform well for the purpose of such comparison
urespective of the distribution.
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