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Abstract: In this study, researchers employed the biological process to formulate a discrete-time homogeneous
model for the dynamics of weed density mteraction through biologically defined states and the mechanism of
seedling recruitment incorporating weed reproduction from persistent seed bank within a crop growing season.
Researchers obtained its steady-state solutions and analyzed them for local and global stabilities. Researchers
discovered that the model 1s locally asymptotically stable but globally unstable. This result 15 contrary to the
mteresting property of the most standard biological one-dimensional discrete models which display global
stability if they are locally stable. Although, the model equation falls within the category of population models
that exhibit local stability but not globally stable. However, researchers conclude that the weed population may
exhibit inexpected behaviours that is the population may not be predictable.
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INTRODUCTION

Weeds are generally defined, as uncultivated
species that proliferate in agricultural setting thereby
interfering with crop production. In fact, weed is a term
applied to any plant that grows where 1t 1s not wanted, 1t
15 a human grouping of plants. They exist only in natural
environments that have been disturbed by humans, such
as agricultural lands, recreational, irrigation dams, etc.
(Akobundu, 1987).

Population  dynamics study of
population growth (numerical change in time) composition
and spatial dispersion. The objectives are to identify
the causes of numerical change in population and to
explain how this cause act and interact to produce the
observed pattern.

Not until recently population models (human and
plants demography, mfectious diseases, etc.) were
concentrated mamly on the use of differential equations.
Although, most populations, such as weeds and
phylogenetically more evolved organisms live in seasonal
environments and because of this have annual rhythms of
reproduction and death. Besides, measurements are often
made annually because interest is centred on population
changes from year to vear. Continuous differential
equations are not well suited to these kinds of processes.
Hence, there i1s need for other modelling techmques,
especially when interested in population with only annual

mvolve the

reproductive tendencies or predictable changes that occur
seasonally. Discrete-time models are better suited for
orgamism with annual or seasonal reproductive patterns
(Allen et al., 1996, AlSharawi and Rhouma, 2010, Sacker,
2011). Since, plant has discrete generations (seasonal
reproduction) difference dynamical equation systems are
an appropriate mathematical tool to model behaviour of
population with no overlapping generations, such as
weeds. So, difference equations (discrete time model) are
better suited for organisms and plants with seasonal
reproductive pattern.

Although, the subject of difference equations and
discrete models have been flourishing in the past
2 decades which have frequently been applied in
models of annual plants (Allen et al, 1996) but
density-dependent in discrete population models 1s
partially understood.

Tt is well-established that population models can be
derived from two different sources, data and biological
process. The first rely completely upon data to look at the
dynamics of the population (Rachel, 2011). The second 1s
a model defined by biological processes which do not
include any data but nstead attempt to understand the
dynamics of populations purely from what is expected to
oceur. These two types of models require different frame
worls, one needs a biology defined state and the other a
data defined state.

In this study, researchers employed the biological
process to develop discrete-time homogeneous models
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for the dynamics of weed density interaction through
biologically defined states and the mechanism of seedling
recruitment incorporating weed reproduction from
persistent seed bank within a crop growing season.

MATERIALS AND METHODS

The development of weed population dynamics
model has not been excessively prolific, so researchers
employ the basic characteristic and life history of weed to
formulate the model.

Characteristics and life cycle of weeds: A weed is usually
characterized by rapid growth and it typically replaces
other more desirable plants. Most weeds, particularly
annuals, survive seasons of adverse weather and maintain
their genetically heritable traits through seed production.
The long-lived species tend to produce few seeds than
the short-lived species that face more environmental
hazards. The seed, therefore plays important roles in the
survival and multiplication of weed, such as spread of the
weed species (dispersal) weed seeds are dispersed in
space and in time also protection during conditions that
unfavourable for germination (dormancy) (Aldrich, 1984;
Harper, 1977; Radosevich and Holt, 1984). Weed seeds are
continuously added to agricultural land during cropping
cycle. In the tropics, the bulk of the weed seeds are
produced during the short period of bush fallow that
fallow crop harvest. The quantity of seeds produce by
given weed species in a growing season influences the
richness of that species in a given habitat. It also, affects
the competitiveness of the weed in crops grown in that
location. Consequently, there has been increased weed
pressure in agricultural lands in all parts of the tropics
Africa where traditional long bush fallow periods have
been replaced by short duration bush fallows.

Mature weed shed their seeds on agricultural lands
and thus add to the population of weed seeds in or on the
soil. This new and periodic weed seed supply has been
described as the seed ram (Harper, 1977). Some of the
weed seeds that are on or 1n the top soil may be killed by
heat during pre-planting bush burning. Germinating weed
seeds may, also be killed by re-emergence herbicides.
Non-dormant weed seeds that escape these actions will
germinate and the seedling weeds could be killed by
adverse weather condition. Only those weed seedling that
escape these action grow to maturity to produce mature
seeds that add to the seed rain. It 1s this seed rain that
replerished the reservoir of viable seeds in the soil has
described this seed reservoir as the seed bank. Tt consists
of seeds produced in a given area plus weed seeds that
have migrated to the area as a result of the action of
various agent of seed dissemination (Harper, 1977).
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Formulation of the model: The following assumptions are
taken into consideration in the formulation of the model
equations:

¢ There are enough growth resources, e.g., nutrients,
light, water, etc., that promote continuous growth of
at least two plant species

¢  Within the populations of weed there
intra-specific competitions

»  All parameters mvolved with the model formulation
are non-negatives

are

Figure 1 depicts the life cycle of weeds. Researchers
employ the assumptions, defimition of variables and
parameters as depicted in Fig. 1, as well as the procedure
similar to what some other researchers have used to
plant population dynamics the
equations which describe the dynamics of proliferation of
single weed species is derived next (Allen et al., 1996;
Nasir et al., 2012).

The residual seeds (v,) n the year t consist of seeds
from previous years (t-1) that have swvived the dry
season and remained dormant (y, ), as well as new seeds

model difference

that have not germmated after surviving the dry season
(x,,). Thus, v, satisfys the equation:

yt:Pﬂ(lfpg)(Xt—lert—l) (1)
Maximum weed seed pool (3,) in year t 1s:
S, =X, +y, (2)
Established P, | Mature
weeds (N) ! weeds (m)
3 T,
b
¥
New
seeds (x,)
P‘
Seods in top
soil (8)
v
P, (l-P) Dormant
seeds (y,)

Fig. 1: A schematic model for population cycle of annual
weeds
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The established weed densities N,,, in the year t+1 is
made up of seed pool 5, in the top soil that survived the
dry season, germinate and become established. This is
describe by:

(3)

N,,=PPPS

o et = PdPgPE(Xt + yt)

This 18 because the germination and establishment of
new and residual seeds are two independent events. The
new seeds n, produced 1 year t are a function of matured
weeds in the year t that 1s:

1+aN,

Equation 4 138 adaptation of Beaverton-Holts type
function because density
dependent growth. Putting Eq. 1 and 4 into Eq. 3 gives:

researchers assumed a

bN
mﬂ—ggg{%l+éﬁ+a@gx&+yg} s
bN
£J+H%HHU*%N&+x)

t

N,,=PPPP

g e m

Therefore, adopting Eq. 3 m Eq. 5 researchers have:

(6)

PP, +P(1-P, )N,

bN
N,, =P,PD.P, :
1+aN

t

In a more compact form Eq. 6 becomes:

=—1 49N
1+aN,

t+1

And subsequently written as:

AR (N

= PPPP,.

P, (1))

b

Maximum seeds produced per mature weed
Intrinsic growth rate of weeds

Weed recruitment factor (1.e., fraction of seeds that
germinate, become mature and produce seeds >0

a = Crowding coefficient (equivalent to the intra-specific
competitions)
v = The density independent fraction of N, surviving in

the seed bank to the next season
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p/1+aN, = The density-dependent net recruitment rate
from generation to generation

This is a non-linear difference equation for the
homogeneous population density of mature weeds in the
year (t+1).

While the term PN/1+aN,, a saturation function gives
the population growth of the weed as a function of
mature weed density. As the density increases the
residual seeds in the top soil are demied access to enough
growth resources (e.g., light, nutrient, water and space)
thereby reduces the chances of seed germination and
establishment. At low density, more seeds would have
access to the growth resources and the proliferation of
weeds follows. Therefore, Eq. 7 gives homogenous model
for a single weed proliferation with no control.

RESULTS AND DISCUSSION

Analyses of the model equation: In this study, researchers
analytically analyze the homogeneous weed proliferation
Eq. 7 for the existence and stability of its associated
steady-states (fixed-point) solutions.

The first step m understanding the dynamics of
model population is to determine the steady-state
stability of the
equilibrium (Cushing and Yicang, 1994). That 1s, usually
the first step to take in order to study the dynamics

(i.e., constant) solutions and the

of any system (model) 1s to find its steady-state points
(solutions). So, the steady-state solutions of the models
are obtained next.

Steady-state solutions of the model equation: A pomt 15
assumed to be a solution of the steady-state of the model
equations only if all of its components are non-negative
for biological and ecological sigmficance. The methods
used to solve for the steady-states in discrete model
(difference equation) are comparable to those used in
continuous models (differential equations) (Akmwande,
1999; Akinwande and Abdulrahman, 2011). To solve for
the steady-state of Eq. 7, 1t 1s assumed that:

N,,, = N,,impliesthat AN =N, - N =0

_ (8)
So,letN,,, =N, =N

There are two non-negative solutions of the
steady-states for the single species weed model Eq. 7. So,

applying method Eq. 8, the steady-state of Eq. 7 satisfies
the equation:
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B—N,+yN
1+aN

N= )

From Eq. 9, researchers have N (1-p/1+aN-y) =0,
one steady state solution is N=0. That is non-zero
steady-state occurs when F (N) =1. Hence, N = B-(1-y)a
(1-v). So, second fixed point (Eq. 7) exists and positive
provided y<1, since p>1-y. Hence, the two non-negative
steady-states are B, (0) and E, (B-(1-y/a (1-y).

The zero state E, 1s comparable to a situation of weed
density extinct (or dies out) during dry season. While, the
non-zero state E, is liken to the existence of weeds or
infestation of weed in arable field.

Local stability of the steady-state solutions: To test for
the local stability of the steady-states of the model
equation, researchers adopted the well known stability
theorem for discrete one-dimensional population models
as stated by Cull (2007).

Theorem 1: If  (x) 13 differentiable, then a population
model is locally stable if [f'(%)|<1 and if the model is locally
stable then |f'(x)|<1. Here, * is the unique equilibrium
point of function x.,, = f (x,).

Applying this theorem to the model researchers
obtain the derivative of RHS of Eq. 7, i.e., let:

BN

+9N
1+aN !

f(N)=

Then, after simplification researchers obtained:

f(N)=—"— (10)

Stability of E, (0): Evaluating Eq. 10 at N = 0 gives
£ (0) = p+vy. So, zero steady-states is locally stable if:

(1)

f'(0)|:B+y<1

Otherwise, it 1s not stable. Thus, if the model is
stable, the density of the mature weed tends to zero and
the weed population dies out or eradicated. Clearly,
PB+y=1, since so E, = 0 is unstable. This implies that the
density of the mature weed tends to a new equilibrium
density E,.

Stability of the solution E, (N): Evaluating Eg. 11
at N = B+y-1/a (1-y) gives ((1-y)/Pry. So, the
steady-state I, is stable whenever ((1-y)/p)+vy<1. That is:
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(1-v)
B

<1 (12)

Proposition: If f+y>1, then the non-zero steady-state E,
15 locally stable, otherwise it is not stable.

Proof: Suppose E, (0) 1s stable. It implies that p+y<1. For
E, to be stable, wing Theorem 1, Eq. 12 must hold.
That 1s:

=7 4
p

Implies:

1<
So:

—P<l-y<p
Then:

1-B<y=<1l+p
Implies:

l<p+y<1+2p

This completes the proof. Hence, the non-zero
steady-state B, is locally stable. While, E, (0) is unstable.
Thus, the density of mature weeds N, approaches or
settles down to a positive constant value given by

By-1/a (1-y).

Region of stability: The necessary condition for local
stability implies that 1 <B+y, 0<p and O<y<1. But, if 0 =p
and y = 1 the model fitness function at the equilibrium
£(N) degenerates to N (i.e., £f{N) = N) which is not a
population model by the basic characteristics (the basic
characteristics of the models reflect the growth of a
population until it reaches some environmental carrying
capacity and the subsequent decay of the population). So
in the region of stability, the parameters satisfy the
inequalities 1<y, 0= and O<y<l.

Global stability of the non-trivial steady-state: It is
important to know whether or not a model is globally
stable. Models having this property are predictable while
those that do not can exhibit unexpected behaviour
{(Heinschel, 1994). One of the tools used to prove global
stability i difference equations 15 the schwarzian
dervative which was first mtroduced into the study of
one-dimensional dynamical system by David Smger
(Heinschel, 1994; Liz, 2007).

S(f,x)=

£(x) 3[f”(x)2J
f'(x) 2
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Calculation of the schwarzian for the model:

——+1"(N)= iﬁj
(1+aN)
Ga’p
(1+aN)4
6a’p
(1+a) | B y{1-aN) |

2

3
2

—2ap
(1+m)[s+y(1+aﬁﬂ

_ 6a2[3[[3+ }f(l-s- aﬁ)z} - 6a’p’
feax)[p v ) [}
6a2[3y(1+ aN)2

fra) By (1ea) |}

This gives:
6a*fy

s(f,ﬁl):—22
[B + y(1+ aﬁ) }

(13)

This show that s{fN)>0 everywhere. Hence,
non-zero steady-state (E,) 1s not globally stable. A good
understanding of the behaviour of a model depends on
knowing whether or not the model is globally stable.
Hence, the weed population may exhibit unexpected
(that the population may not be

behaviours 1s

predictable).

CONCLUSION

The steady-state solutions of the proposed model
equation were obtained and analysed for local and global
stabilities. The analysis shows that the model 1s locally
asymptotically stable but globally unstable. This result 1s
contrary to the interesting property of the most standard
biological one-dimensional discrete models which display
global stability if they are locally stable. Although, the
model equation falls within the category of population
models that exhibit local stability but not globally stable.
Therefore, further study of the behaviour of this model for
global stability is under consideration.
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