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Abstract: The potential advantage of stable distribution
assumption in modelling ecological disturbances is of
animal movement is the central theme of this study.
Studies relating animal movement paths to structured
landscape data are particularly lacking despite the obvious
importance of such information to understanding animal
movement. Previous studies of elephant movement have
shown that speed is heavy tailed and skewed. In this
study, we model the heavy tails using the student t
regression model, the skewness and the heavy tails with
the stable law regression. The new models add sub-
stantial flexibility and capabilities including the ability to
incorporate multiple variables. We use a likelihood based
approach that utilizes the fourier transform technique to
evaluate the densities and demonstrate the approach with
movement data from five elephant herds (Africana
Loxadonta). The proposed methodology can be useful for
GPS tracking data that is becoming more common  in
monitoring of animal movement behaviour. We discuss
our results in the context of the current knowledge of
animal movement and in particular elephant ecology
highlighting potential applications of our approach to the
study of wide ranging animals.

INTRODUCTION

Regression analysis is one of the most popular
methods  in  ecology  and  statistics  where  most
variables of interest such animal movement step lengths
are assumed to be normally distributed. However, the
normality assumption is not appropriate for many
ecological variables, especially, animal movement metrics
(speed, step lengths) variables and also in some cases
circular metrics (turn angles) Bartumeus[1]. Animal

movement linear metric are typically heavy tailed and
excessively highly peaked around zero. A stable
distribution whose shape is governed by the stability
index  parameter  α  represent  one  such  alternative.
Thus, such a distribution is better suited to describing
such  variables;  the  normal  distribution  is  a  special
case of the stable distribution. To this end, the four
parameter family of stable distribution  is more of a
generalization of the central limit theorem than an
alternative.
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The flexibility of stable distribution can be explored
in  a  regression  modelling  framework  to  overcome
some  of  the  deficiencies  of  linear  regression models
when  analysing  heavy  tailed  and  skewed  data.  The
non-Gaussian stable distributions have heavier tails than
the Normal distribution and allow skewness?. Heavy tails
and skewness implies that extreme observations are given
a greater probability of occurring and are thus given less
weighting in maximum likelihood estimation, so that,
fitted lines are not biased towards these extreme
observations[2]? Therefore, it is a reasonable extension to
the regression models to assume a stable distribution as
the distribution of the error terms. Alternative  models  to 
the  stable  law regression models are the student’s t,
skewed student’s t and skewed normal regression models?
demonstrates that the regression model with student’s t
errors also suffers from monotone likelihood. The use of
the normal distribution to model  errors of  linear  model 
is  under  increasing  criticism  for  its  inability  to  model 
fat  or  heavier  tailed distributions as well as being non-
robust. Lange et al.[3] generalized the traditional
regression model with normal distributed errors to more
robust regression models with t distributed errors. It is
well known that the t distribution provides a convenient
description for regression analysis when the residual term
has a density with heavy tails. From, the classical linear
model can be modelled as follows.

The stable distribution has found wide applications in
financial problems, Biology, genetics, ecology and
geology[4] with a few applications in movement ecology[5].
The assumption that animal step lengths or speed follow
a stable distribution has far reaching consequences for
both foraging ecology and statistical theory[5]. For
example, the problem of L’evy flight search patterns is
well studied[6-9], robustness  to  the  sampling  frequency 
is  studied  by Kawai and Petrovskii[10] and for a specific
discussion of movement ecology and statistical issues[5].
However, in all these studies, the link between linear
metrics and the environmental heterogeneity variables
remains unexplored. According to Duffy et al.[11],
different vegetation cover types have varying impacts on
elephant movement. Surface water availability, patch
quality, rainfall  and  distance  to  the  water  bodies is
known to affect elephant movement. The effects of
artificial water  points  and  fences  has  been  investigated 
Loarie et al.[12]. In this study, we examine the effects of
vegetation cover type in a stable regression model setup
in order to understand elephant movement.

Advances in statistical computation have made it
possible to estimate the unconditional stable density as
well as incorporate covariates[2]. However, estimates of
the stable distribution conditional on a set of explanatory
variables in the context of regression framework used by
applied researchers poses an overwhelming computational
problem?. One of the methods used for evaluating the
stable density (the direct numerical integration
techniques) is non-trivial and burden-some from a
computational perspective[13]. As a consequence,

maximum likelihood estimation algorithms based on such
approximations are difficult to implement, especially for
huge  data  sets  encountered  in movement ecology[5].
However, with increasing computational power and
efficient algorithms, maximum likelihood estimation and
other comparative techniques have been implemented by
Nolan and Ojeda-Revah[13]. Due to the above mentioned
drawbacks, stable distributions are not well explored in
movement ecology.

MATERIALS AND METHODS

Stable distribution: Stable distributions are a four
parameter family of probability models which was first
introduced by L’evy in a study of normalized sums of
independent and identically distributed (i.i.d) terms.  A
random variable X is said to be stable distributed if for
any positive integer n>2, there exist constant an>0 and bn

0ú such that X1 +, ..., + Xn an X+ bn where X1 , ..., Xnd" "
are independent identically distributed  copies  of  X  and 

-signifies  equality  in  distribution.   The  coefficients d" "
an  is  necessarily  of the form an = n1/α for some α0(0, 2]
Feller[14].  The parameter α is called the index of stability
(tail index) of the distribution and a random variable X
with index α is called α-stable. An α-stable distribution is
described by four parameters and will be denoted by s (α,
β, γ, µ). Closed form expressions for the probability
density function of the α-stable distribution is known to
exist only for three special cases (cauchy, normal and
L´evy distribution).

The research by Mandelbrot[15] and Fama Fama[16]

elicited a lot of interest in using stable distributions to
model heavy tailed and skewed phenomena but research
has been restricted to theoretical context due to
computational complexities involved in calculating the
probability densities and the consequently what this has
for the maximum likelihood procedures. Notable
contributions in this field of study are found in
DuMouchel[17, 18], DuMouchel[19], Zolotarev[20],
Samoradnitsky and Taqqu[21], Janicki and Weron[22] and
more recently Nolan[22, 23], Nolan and Ojeda-Revah[13].

Although, the probability density function of the
stable distribution cannot be written in closed form, the
characteristic function which can be specified in a closed
form for all stable distributions, allows the only opening
for practical use of the distributions in real life problems
McHale and Laycock[24]. The characteristic function can
be expressed in several different forms, each of which has
advantages over others, for example, formula simplicity
over computational consistency. However, the Zolotarev’s
form has the advantage of being continuous in all the four
parameters and behaves more intuitively than in other
forms Nolan and Ojeda-Revah[13]. Lambert and Lindsey[2]

discuss complexities in fitting their regression model
caused by the sensitivity of the location parameter to the
skewness parameter. For  numerical purposes, several
researchers   have  recommended  the  use  of  Zolotarev’s 
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parameterization as the most practical in application to
real life data sets Nolan and Ojeda-Revah[13]. The
characteristic function of a stable random variable X is
given by:

(1) 
 

 
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The family of stable probability density can be
calculated using the fourier transform of the characteristic
function given by:

(2)   itx

-
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S x, , , , e x; , , , dt
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Statistical software to fit stable distribution and
density functions are available in Rmetrics for R Wuertz,
stable Nolan and Ojeda-Revah[13] or as standalone
program stable Nolan[23]. These resources allow one to
evaluate the consequences of replacing the normal
assumption with the more general stable distribution.
Further, advances in theory and computation will aid the
development of new models in the coming years and the
use of the stable distribution will become more common.

Stable paretian regression model: In may practical
applications in animal ecology, it is known that animal
movement rate can be affected by a number of covariates
(explanatory variables) such as the nearest distance to the
water point, vegetation cover type, distance to tourist
roads, soil topology, seasons, amount of rainfall,
temperature and many others Duffy et al.[11]. However,
animal movement data is characterized by skewed and
heavy tailed distributions. Thus, a model that provides a
good fit to movement data will definitely yield more
precise estimates of the quantities of interest. Based on
the stable distribution assumption, we propose a linear
regression type model linking the response and the
explanatory variables X = (x1, x2,..., xn) as:

(3)
n

i 0 i j i i
i 1

y + x + ,i 1,...,n


    

Where:
β = A vector of the unknown parameters to be estimated
0i = The random error term

The notion of Stable Regression Models (SRMs) was
developed by McCulloch[25] for symmetric stable
distribution and discussed in detail by McHale and
Laycock[24].  In SRMs, the error terms 01, 02, ..., 0n are
assumed to be independent identically distributed stable
random variables denoted by 0i- S (α, β, γ, μ) Standard
methods of approximating such integrals are of unknown
accuracy in real settings. Instead, DuMouchel[17]

suggested the use of numerical inversion of the First
Fourier Transform (FFT) to obtain a closed density and
hence the likelihood for stable distributions. In a similar
manner, numerical inversion of the first fourier transform
can be used to obtain the parameters of the stable Paretian
regression model. DuMouchel[17-19], showed that subject to
certain conditions, the maximum likelihood estimates of
the parameters of an α-stable distribution have   the usual
asymptotic properties of a maximum likelihood estimator.
They are asymptotically normal, unbiased and have an
asymptotic covariance matrix nG1 I (α, β, γ, μ)G1 where  I
(α, β, γ, μ) is the fisher information matrix. McCulloch[25]

examines  the  linear  regression  model  in  the  context
of α-stable distribution paying particular attention to the
symmetric case. Here, the symmetry constraint  is  not
imposed. If we denote the stable density function by S (0i;
α, β, γ, μ) then we may rewrite the density of 0i as:

 
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i ij j
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Hence, the log-likelihood function for the vector of
parameters  θ = (α, β, γ, μ, β0, β1, ..., βp) from model (3)
has the form:

(4)
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The ML estimator  of the vector of unknown̂
parameters   can   be   calculated   by   maximizing   the 
log-likelihood (4) to obtain the solution to the equations:
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where,  if we let W be the diagonal matrix
n
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Then using the least squares notation, we may write
the normal (Eq. 5) as:

(6)  ˆX 'Wy X'WX 

And if X’ W X is not singular, the parameter
estimates of β are given by:

(7) -1
XWX X'Wy 

Nolan[26] showed that the evaluation of the likelihood
function is made possible by using efficient non-linear
optimizers. Maximum likelihood algorithm used  in  this 
research   are  provided  by  Nolan and Ojeda-Revah[13]

within the R package stable 5.1 which can be obtained
commercially from www. Robust Analysis.com. Initial
values for α, β, γ, μ, β0, β1, ..., βp can be taken from the fit
of the stable distribution model.

Regression model with t errors: We  consider  the 
univariate  nonlinear  regression  model  where  the 
observations   y = (y1,. .., yn) are independent, yi  having 
a  student  t  distribution  with  location  parameter μi, 
scale  parameter σ and v degrees of freedom.  The density
of yi, for each i = 1, ..., n is therefore, given by:

(8) 
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where σ> 0 and  ν>1 are both unknown. We define a
linear regression for y by:

(9)
n
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
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where,  0 = (01, ..., 0n) is  the  error  vector  where  the 
components  are  independent  and  identically  dis-
tributed according to the student t distribution with
location  zero  and  scale  δ  and  degrees  of  freedom  v
Lange et al.[3].  X = (x1,..., xn) is the n×k matrix of
explanatory  variables.  The parameter space is given by
θ = (β, δ, ν). The likelihood is given by:
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The parameter estimates θ are obtained by
maximizing the log-likelihood equation:
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The least squares estimator of β is:
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The variance-covariance matrix for is:̂
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Lange et al. (1989) noted that this is also the
maximum likelihood estimate of β. provided the following
stimate of the degrees of freedom parameter:
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The maximum likelihood estimator of σ2 is:
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as in the normal case.  For ν>2   where    2 2
u

n-p
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  
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the unbiased and the minimal mean squared error
estimators of  σ2 are:
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Maximum likelihood algorithm used in this research
are provided by Osorio and Galea[27] in R statistical
package ‘heavy’.

Application: elephant movement data
Data description: The telemetry data employed in this
study was collected by the South African National parks
(SAN- PARKS). In May 2006, 18 African elephants were
fitted with GPS-argos telemetry collars (Telenics).
Capturing and handling was done according to the
University of Kwa Zulu Natal animal care regulations.
GPS  locations  were  recorded  every 30 min during the
first 3 years after collaring and transmitted to
SANPARKS  via. an  Argos  satellite  uplink  every  day
when the elephant was within network range[28].
Telemetry points collected within the first 24 h after
capturing and those with obvious errors were excluded
from the analysis. Overall, the telemetry data set was
composed of >50,000 GPS points, taken over a period of
three years, across a 19, 485 km2 area Birkett et al.[28],
Vanak et al.[29].

Vegetation cover types: To determine the effects of
various habitat types in the pattern of elephant movement, 
we  extracted  the vegetation cover types data of before
and after the breakpoints. Land cover types and distances
to different landscape features within a spatial resolution
of 25 m pixels were obtained from the Kruger national
park Land cover database. This database is based on the
Thematic mapper sensor on landsat Earth-resource
satellites using data frames recorded between 2006 and
2009  (spectral analysis Inc. 2009). Dummy variables of

Table 1: Dummy variables of vegetation cover type under investigation
Types Variables
yi Speed of the animal
x11 Nearest distance to the river
x12 Comb
x13 Thicket
x14 Mixed combretum/terminalia sericea woodland
x15 Combretum/mopane woodland of Timbavati 
x16 Acacia welwitschii thickets on Karoo sediments
x17 Kumana sandveld
x18 Punda maria sandveld on cave sandstone
x19 Sclerocarya birrea subspecies caffra/Acacia

nigrescens savanna
x20 Dwarf acacia nigrescens savanna
x21 Bangu rugged veld
x22 Combretum/acacia nigrescens rugged veld
x23 Lebombo South

vegetation cover types were created and fitted to a
regression model assuming stable distributed error terms.
The land cover of Kruger National Park (KNP) consist of
fourteen vegetation cover types.

Model formulation: The observations of the response  y1,
y2,..., yn variable represent the movement rate of five
elephant herds derived before and after breakpoint home
ranges[28]. The covariate vector xi is the dummy variables
representing the vegetation cover type created from the
habitat variable. Due to computational complexity of the
stable regression model and lack of rich data set with
covariates of elephant herds, we shall demonstrate the
results of habitat cover types only in this study. The
dummy variables created from vegetation cover type are
presented in Table 1. Now, we present the results by
fitting the model:

(15)i 0 1 2 p 23y + x11+ x12 ,...,+ x     

Where the dependent variable yi speed of elephants
follows the stable law distribution or the student’s t
distribution for i = 1, ...,  200. The dependent variable yi

is the speed of elephant before and after breakpoint home
ranges obtained as described by Birkett et al.[28] and
Vanak et al.[29]. The MLEs of the model parameters are
calculated using the procedure nlm in R statistical
software. Iterative maximization of the logarithm of the
likelihood function of the stable law regression starts with
some initial values for the θ taken from the linear
regression model.

RESULTS AND DISCUSSION

Table 2 lists the MLEs of the parameters for the
SRMs and HTRMs Models fitted to the current data. The
SRMs Model involves four extra parameters which gives
it more flexibility to fit the elephant movement data. Due
to lack of rich data set of animal movement with
covariates we investigate only the effects of habitat types 
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Table 2: Summary of heavy tailed -t distribution and stable law regression model
Heavy tailed model Stable law regression model
-------------------------------------------------------------- ----------------------------------------------------------------------------------

Parameters Estimate SE p-values Estimate SE p-values
α 1.309 0.051 1.000
β 0.857 0.081 1.000
γ 0.091 0.003 1.000
intercept 0.376 0.025 1.0000 0.340 0.011 0.000
X12 -0.089 0.054 0.0000 -0.086 0.024 0.000
X13 -0.114 0.047 0.0000 -0.144 0.020 0.000
X14 -0.068 0.034 0.0000 -0.053 0.015 0.000
X15 -0.001 0.044 0.0000 0.008 0.019 0.663
X16 0.067 0.037 0.9999 0.033 0.016 0.978
X17 0.228 0.058 1.0000 0.165 0.026 1.000
X18 -0.047 0.045 0.0202 -0.080 0.020 0.000
X19 0.008 0.034 0.6772 0.008 0.015 0.500
X20 0.064 0.039 0.9999 0.043 0.017 0.994
X21 0.006 0.042 0.6103 -0.006 0.019 0.382
X22 0.021 0.041 0.8508 0.014 0.018 0.773
X23 -0.038 0.047 0.0559 -0.048 0.020 0.009
Log like 88.00481 84.16449
AIC -170.4644 -162.7838

as dummy variables. Most of the environmental variables
considered, here, were selected as drivers of movement
rates before and after break point analysis of home
ranges[29]. The fitted SRM indicates that the dummy
variables X12, X13, X14 X18 and X23 are significant at 5%
level of significance. The linear regression intercept was
however, significantly <1 indicating the ability of our
models to predict the movement of the elephant at
moderate speed.

Since, we have demonstrated that the residuals are
non-Gaussian, we will now compare the stable estimates
with those obtained from the heavy tailed regression
model with student’s t distributed disturbances. The
results of student’s t regression model in Table 2 indicates
that the vegetation covers combo, thicket, mixed
combretum, punda maria sandveld and lebombo South
significantly reduced the movement rates of elephants
while mopane woodland, acacia welwisitchii, Kumana
sandveld, Sclerocarya birrea subspecies, dwarf acacia
savanna, Bangu rugged and Combretum acacia rugged
increased the movement rates though not significant. The
the results of stable law regression model indicates that
the vegetation covers combo, thicket, mixed combretum,
punda maria sandveld and lebombo South significantly
reduced the movement rates of elephants while mopane
woodland, acacia welwisitchii, Kumana sandveld,
Sclerocarya birrea subspecies, dwarf acacia savanna,
Bangu rugged and combretum acacia rugged increased the
movement rates though not significant. We note that the
movement of elephants in the resource poor patches are
positive and significant indicating that elephants increased
there movement speed when moving from search of food
and water while in resource rich patches the move at a
slower speed as they forage. The stability index parameter
estimated is 1.31 which is <2 with a standard error of

0.0511 indicating that the data is heavy tailed.  Clearly we
can reject the null hypothesis that the random disturbance
follows a Gaussian distribution (the hypothesis α = 2) in
favour of the alternative that the disturbance follows a
non-Gaussian stable distribution with infinite variance.
Figure 1, further supports the findings of the fitted model
with residuals of the stable distribution plotted along the
empirical density of the data. The density plot shows that
the empirical distribution has heavier tails and a higher
more concentrated peak compared to the Gaussian
distribution. These attributes convey the ecological
importance of the tails with appropriate statistical
assumption. We used the Akaike information criterion to
compare the student’s t and  the  stable  law  regression 
models.  The  results of Table 2 indicates that the student
t regression model better fits the data than the stable law
regression model with an AIC of -170.46 and -162.78,
respectively.

Biological implications and applications: The empirical
analysis shows that the effect of vegetation cover types is
to reduce the movement rates of elephant in abundant
food patches and increased the movement rate in poor
resource areas. This finding is consistent with the
descriptive analysis by Duffy et al.[11] who hypothesized
that the quality and availability of forage suppresses
movement rates of elephants. The findings also support
the argument by Hopcraft etc who found that resource
rich vegetation cover reduced the movement rates of
animals in Serengeti game reserve, Kenya.

The stable regression model estimated in this study
sheds more light on the earlier results by identifying how
the underlying ecological processes result to differential
habitat use. African elephants have large effects on
vegetation and high numbers can lead to extensive habitat 
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Fig. 1(a-d): Diagnostic analysis of elephant movement data, (b) Stable distribution with theta = (1.346, 0.927, 0.084,
0.351), ( c) Stable distribution with theta = (1.346, 0.927, 0.084, 0.351) and (d) z scores of stable distribution
with θ = (1.346, 0.927, 0.084, 0.35)

modifications.  Driven by  the need to manage these
impacts several models have been developed to better
understand the interaction between elephants and trees.
Therefore this understanding can be used for both
management and habitat conservation Dai et al.[30].
Another implication of the stable regression analysis is
that the distribution of movement rates-even when
conditioning on the vegetation attributes-has infinite
variance. This means that the point predictions are useless
because they lack precision especial when the stable
parameters α and  β are at the boundaries. Confirming the
foraging success and measuring the impact of
environmental drivers is one of the challenges facing
ecologists today. Thus, the finding of this study provides
a direct link of inferring   the effects of vegetation cover
types on elephant movement speed. However, the stable
Paretian model does not permit the conditional
distribution of movement rates to be quantified and it can
be used to make probability statements that may be useful
in practice, for example, optimal foraging theory. A
potentially important practical application of the stable
analysis is movement strategies analysis. A strategy that
includes both the L’evy stable walks and the L’evy flights
are  thought  to  optimize  foraging.  Kawai  and 
Petrovskii[10] show in movement ecology applications that
stable models-because they capture both skewness and
heavy tails in movement rates-perform considerably well

than models based on power law distribution or the
empirical distribution.  Further,  due to the analytical
tractability of   the stable distributions, it is possible to use
the stable models to construct optimal search strategies
for animals within the framework of movement ecology.
In animal movement studies where rare steps in the upper
tail of the distribution drive search optimality, it appears
promising to use the stable regression models developed
above as an input into constructing an optimal search
strategies for animals that help understand the relationship
between elephant herds and their habitats.

CONCLUSION

We have described the theoretical justification for the
use of stable law regression models and t regression
models in analysing animal movement data. To  be useful
in practice,  a statistical model of the speed  of animal
movement should capture asymmetry, the heavy tails
implied by the importance of extreme events and allow
the speed to be conditioned on a vector of explanatory
variables.  Recent  advances  in  the  statistical  theory  of
non-symmetric density functions and their estimation
make it feasible to estimate statistical models based on the
stable law and the student’s t distribution. It is also
possible to estimate t regression models using standard
maximum likelihood techniques.
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Despite several studies detailing analogous statistical
approaches, application of such models to GPS tracking
is limited due to computational difficulties Kawai[5] and
lack of adequate data rich in covariates in ecology. The t
regression model is particularly appealing in ecology
where the data are characterized by heavy tails and where
we are interested in conditional distributions. Unlike some
other distributions in the L´evy stable family- t models
does not account for infinite variance and is not in the
domain of attraction of sum of independent and
identically distributed random variables. However, the t
model is intuitively appealing in that it extends the normal
distribution model by permitting tails to be heavy and
symmetric. Also, the t model is computationally
straightforward and estimable using standard statistical
softwares.

We have identified several key areas to be pursued.
Some of these areas are straightforward such as increasing
the number of explanatory variables, allowing the
parameters of stable distribution to vary with the
explanatory variables in a Generalized Linear Model
(GLM) framework. Diagnostic testing and model
checking tools need to be developed to check the
adequacy of the fitted models. Similarly, the random
effects can be included in the model to explain herd
variability between herds. While each is an extension of
the simple models demonstrated they entail estimation of
many more parameters.

Our empirical application demonstrates the
importance of modeling explicitly the asymmetries and
heavy tails that characterize animal movement linear
metrics (step length or speed) if one is to make the
accurate probability statements required to manage the
environmental fluctuations. Typically, elephant movement
is not predictable as it is difficult to determine analytically
when a step  starts  and  ends. However, quantifying the
distribution  of  the  movement  rate  conditional  on
specific-environmental variables is one way  to  describe 
the  effects  of  the  drivers  on  the elephant movement.
The stable regression models appears to be a useful tool
for quantifying this relationship and it may have an
important and practical application in assessing the value
of artificial incentives in wildlife management, especially
on private game ranches in South Africa.
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