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Delection Analysis of Clamped Rectangular Plates of Variable Thickness
on Elastic Foundation by the Galerkin Method
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Abstract: Deflection of rectangular plates of variable thickness resting on an elastic foundation 1s studied. The
fourth order differential equation is solved by using the Garlerkin method. The thickness of plate is assumed
to vary linearly along the x axis and this variation 1s taken to be symmetric with respect to the middle surface.
The center deflection has been computed for different values of the taper parameter, aspect ratios and
foundation modulus. Sunplicity and quick convergence are the advantages of the present method m comparison
with more laborious numerical methods requiring extensive computer facilities.
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INTRODUCTION

Plates of variable thickness are widely used in
engineering structures, such as bunkers, remforced
concrete breast walls, rectangular reservoir, buttress dams
reinforced concrete pavement airport runways and
foundation slabs of buildings. Moreover, in ship design,
the ship bottom 1s frequently considered as a complex
plate of variable thickness. The deflections of plates of
variable thickness are generally small in comparison with
the plate thickness and the middle plane of the plate
remains as a neutral surface during bending. The normal
stresses in the transverse direction are neglected as
well as shear strain. Conway and Ithaca (1951) Conway
(1953, 1958) was the first to solve the problem of bending
of circular and rectangular plates of variable thickness.
Bastin et al. (1972) proposed a solution mn closed from to
calculate the moments and tensions of rectangular plates
of variable thickness subjected to hydrostatic pressure.
Anon-linear iteration procedure was used by Soong
(1972) to approach the problem of deflection of plates of
variable thickness. Petriana and Conway (1972) reported
some deflection and moment data of plates with variable
thickness. Chen (1976) attempted the problem of bending
of plates variable thickness in general manner. Banerjee
(1979) investigated and obtained limited deflection data
for skews plates of variable thickness. In the study
reported herem, an attempt 1s made to obtain numerical
results for bending of lamped rectangular plates with
variable thickness on elastic foundations using the
Galerkin method.

GOVERNING DIFFERENTIAL EQUATION

For a clamped rectangular plate of variable thickness
with 2a and 2b as the dimension s in x and y coordinates
and subjected to a umform distributed load g, the
governing  differential of the
displacement w of point in the middle plate of variable
thickness can be expressed as:

equation in  terms
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By using the dimensionless ratio, Eq. 1 can be
transformed mto dimensionless from as:

, O'W , o'W L W 2
(1+c&) (63’;“ + 2R 6&2%2+R o’ I+ &1+cE) o
FW _, FW FW LW, ga'
( o +R 3§%Z)+ 6(1+ cEX P +LR o’ )= h.D,
Where

E = Modulus of elasticity of the plate material.
v = Poisson’s ratio.

h, = Plate thickness atx=0.

h = Plate thickness.

¢ = Taper parameter.

D, = Flexural ngidity of the plate at x = 0.
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q = Lateral load per unit area.
R = Aspectratio of plate (a/b).

£ = Dimensionless parameters in directional
coordinates for rectangular plate of variable
thickness £ = x/a, 1 = y/b.

W = Lateral displacement W = w/h,.

In the analysis of plates of variable thickness on
elastic foundations it is assumed that the restoring
pressure i1s everywhere proportional to the deflection. 1.e,
a Winkler type foundation Thus the governing
differential equation can be easily obtained by adding
KW to the left hand side of Eq. (2), where

ka’
h.D

0="n

K=

and k is the modulus of elastic support reaction per unit
area per unit deflection.

BOUNDARY CONDITIONS
AND APPROXTIMATING FUNCTIONS

The plate 13 considered thin and clamped all round.
A sketch of the plate with the coordinate system is shown
in Fig. 1. The thickness of the plate varies linearly along
the x axis and this variation is taken to be symmetric with
respect to the middle surface. In the Galerkin method, a
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Fig. 1: Rectangular plate of variable thickness and the
coordinate system (h=hy(1+c£))

linear combination of independent functions must be
chosen for the displacement functions satisfying all
boundary conditions. Moreover, these functions must
have the same order of derivatives as called for by the
differential equation. The boundary conditions for the
clamped plates of variable thickness are at

M _woo E=+1 and 2V _w_o
24 &n

at 1 = xl. In order to satisfy the boundary conditions, the
following expression is chosen:

W={1- @2)2(1—712)2((31 + Czéz + sz + C4&2712 +
C.g +Cm’)

METHODS OF SOLUTION

The Galerkin method is obtain a solution for the
differential Eq. 2. The governing differential equations for
the deflection analysis of plates of variable thickness are
similar the problem of the form:

£(w)}p=0 (3)

Where, ¢ is the differential operator, p is the external
force. The equilibrium of the structural system will be
obtained by integrating the differential equation over
the domain A. By denoting &w as virtual displacement
and noting that the virtual work of the mternal and
external forces must vanish

W, +8W, =0 (4)
and therefore

JJw)-p)dwdA=0 (5)

Where, A mdicates the integration domain.

Equation 5 is true only if the displacement function
w is the exact solution of the problem under investigation;
this function is written in the form;

w=3ICLxY) (€)

Where, f; (x, y) are functions satisfying all boundary
conditions of the problem and C, are undetermined
coefficients. The function f (x,y) are considered linearly
independent in the region.

The wvariation of small displacements will be
expressed by:

ow = Zn:ﬂ(x,y)acl (7

1=1
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Substituting Eq. 7 into 5
28C, [[w)- P (x.y)dA = 0 )
1=1

Equation & have to be satisfied for any small variation
dw,. Thus, the variation of 8C, are arbitrary: Therefore, we
arrive at the system of equations:

[[w)-pfixy)a=0 ©)

Where, dA=dxdy
Equation 9 can be written in the form;

[ cecw)=pif, G yydxdy = 0 (10)

These are n Galerkin equations with n unknowns.
These coefficients can be determined by integrating the
function over the entire domain.

Throughout the present study, numerical integration
was carried out by a program coded m fortran 77 using
the trapezoidal rule, 2a and 2b are taken as the
characteristic lengths of the plates in x and y directions,
respectively.

RESULTS AND DISCUSSION

For the purpose of demonstrating the accuracy and
the convergence of the present method, results for
deflection analysis of clamped rectangular plates of both
uniform and variable thickness are shown in Table 1.
Results are good agreement with those obtained in an
early work by Ng and Chan (1977) and by Banerjee (1979).
Also the present method shows excellent convergence
even for high taper parameters.

In Table 2, numerical comparison is shown for centre
deflection of clamped rectangular plate of uniform
thickness on a continuous foundation between the
present method and those obtained by Ng and Chan
(1977). For the case of clamped plates of variable
thickness on elastic foundations no comparison of results
can be made as no data are as yet available in the
technical literature.

Figure 2 and 3 shows the centre deflection for
clamped rectangular plates of variable thickness for
various taper parameters. It 1s interesting to observe
thickness that the centre deflection decreases with an
increase of both the taper parameter ¢ and the plate aspect
ratio R. This can be attributed to the fact that both
increases in aspect ratic and parameter increase
significantly the stiffness of the plate.

4
Table 1: Comparison of centre deflection 4 of rectangular plates of variable thickness for R=a’b=1 w = ¢ 9%

Dy

Taper parameter C

0.0 0.2 0.4 0.6 0.8
1 term solution 0.02082 0.02055 0.01866 0.01618 0.01365
2 terms solution 0.02073 0.02010 0.01848 0.01640 0.01428
3 terms solution 0.02020 0.01957 0.01798 0.01593 0.01383
4 terms solution 0.02024 0.01960 0.01800 0.01594 0.01384
5 terms solution 0.02424 0.01960 0.01800 0.01597 0.01397
6 terms solution 0.02025 0.01961 0.01801 0.01600 0.01398
(Ng and Chan, 1977) 0.020201
(Banerjee, 1979) 0.02062 0.01986 0.01785 0.01530 0.01274

Table 2: Variation of max small deflection coeff. & of clamped rectangular plates of variable With dimensionless foundation modulus K for taper parameter

4
c=0 w=g3_

D,
R=ab=1 R=a’b=0.75 R=a/b=0.5
Ng and (Ng and

K Present Chan, 1977) Present Chan, 1977) Present Ref[9]

0 0.020250 0.020201 0.031480 0.031412 0.040570 0.040545
20 0.016090 0.016033 0.022230 0.022201 0.0255320 0.025525
40 0.013260 0.013245 0.017050 0.017036 0.018420 0.018411
60 0.011260 0.011251 0.013750 0.013741 0.014310 0.014307
80 0.009760 0.009756 0.011470 0.011463 0.011650 0.011656
100 0.008600 0.008594 0.009800 0.009797 0.009800 0.009812
120 0.007670 0.007665 0.008540 0.008530 0.008400 0.008459
140 0.006910 0.006903 0.007540 0.007534 0.007410 0.007427
160 0.006280 0.006377 0.006740 0.006734 0.006590 0.006616
180 0.005750 0.005745 0.006090 0.006076 0.005900 0.005963
200 0.005290 0.005291 0.005540 0.005528 0.005400 0.005425
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Fig. 2: Varation of centeral deflection with aspect ration
of clamped rectangular plates of variable
thickness for various taper parameter ¢
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Fig. 3. Variation of centeral deflection with taper
parameter (¢) of clamped rectangular plates of
variable thickness for various various aspect ratio
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Fig. 4. Variation of centeral deflection with taper
parameter (c) and foundation modules for
rectangular plates of wvariable thickness for
various aspect ratio R = 0.5
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Fig. 5: Variation of centeral deflection with taper
parameter (c¢) and foundation modules for
rectangular plates of wvariable thickness for
various aspect ratio R =1
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Variation of centeral deflection with taper
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Variation of centeral deflection with aspect ratio

and foundation modules for rectangular plates of

variable thickness with taper parameter C = 0.2
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Fig. 8 Variation of centeral deflection with aspect ratio
and foundation modules for rectangular plates of
variable thickness with taper parameter C = 0.4
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Fig. 9: Variation of centeral deflection with aspect ratio
and foundation modules for rectangular plates of
variable thickness with taper parameter C = 0.8
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The centre deflections of clamped rectangular
plates of wvariable thickness on a continuous elastic
foundation are shown graphically in Fig. 4-9. Figure 4-6
show the deflection of plates of variable
thickness on elastic foundations for various aspect
ratios. Figure 7-9 show the centre deflection of clamped
of variable thickness on elastic foundation for various
taper parameters. As can be expected the centre deflection

centre

decreases with an increase in the foundation modulus. It
15 also mvestigating to note that the curves tend to
become linear with an increase in the modulus of the
elastic foundation.

CONCLUSION

From the present study it can be concluded the
Galerkin’s method is both effective and very simple to
apply. The method vields very accurate results for
deflection analysis of clamped rectangular plates of
variable thickness and the requirements for computer
facilities are very modest m comparison with other
numerical methods.
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