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Numerical Scheme for Wave Propagation Problem
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Abstract: Turkel studied a hyperbolic equation using composite method. Motivated by Turkel, we study a
corresponding problem (wave propagation problem) using a numerical scheme, namely, central difference
scheme. The stability and convergence of the scheme are investigated. From the analysis the order of
dissipativity for the central difference scheme is four compared to that of the composite scheme, which is six;
hence, the central difference scheme 1s less dissipative than the composite scheme. Another feature of the
central difference scheme 1s that it allows more refinement of the grid size than the composite scheme and thus
refinement helps to improve the accuracy of the central difference scheme. A numerical example based on a
wave propagation problem (initial boundary value problem) is solved using analytic and computer methods and
the results are compared with that of the central difference scheme.
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INTRODUCTION

There are several procedures that come under the
numerical methods. Nonlinear problems n fluid dynamics,
elasticity and potential theory invelving two and three
dimensions are being solved today using numerical
techmques that were not even considered a few years
ago. Turkel (1977) studied a hyperbolic problem using
composite scheme. Other contributors to solutions of
problems  using finite difference scheme include,
Notably (Bilbao and Smith, 2003; Courant ef al., 1928,
Forsythe and Wasow, 1960, Furthata, 2001;
Gustafsson, 1975; Khalifa and Raslan, 1999; Luo ef al.,
2001; Olvewra, 2003; Potter and Okoniewski, 2001,
Shao and Liu, 2001; Zingg, 2000).

In this research, we solve a wave propagation
problem using central difference scheme. The result is
compared with that of the composite scheme
(Turkel, 1977). We then proceed to solve the Imitial
Boundary Value Problem (IBY P) using the analytic and
computer methods. Comparison of the results with that of
the central difference scheme shows that the central
difference scheme 1s sufficiently accurate.

RECURRENCE SCHEME FOR WAVE
PROPAGATION EQUATION

A uniform x-t grid with mesh size Ax = h in the x-
direction and At = k in the t-direction is introduced. Thus,
the difference formula for approximating the wave Eq. 1:

u,ixti=cdu_(xt) O<x<a, O<t<b (1

using central difference method 1s as:

(5,1 = u(x,t+ky— 2u1(:2(,t) +u(x,t—k) oK) (2)
u(x+h,t)- 2u(x,t)
cu, (x,t)=¢ i u(xh: h.t) +omth  G)

Drepping the terms O(k® and O(h*) and using the
approximation U, for u(x;, t) in (Eq. 2 and 3), which in turn
are substituted into the PDE Eq. 1, we obtain:

21.2
U 20 U, =K
1,9 1,1-1 h2

i,i+1 i+1,]

(UL, -20,+U_,) @

For convemence, we mtroduce the substitution
1 = ck/h (where, 1 15 called the Courant number) in (Eq. 4)
and we obtain the relation:

2
U, —2U, +U, =1 [UHI_;zUI_ﬁUi_M] &)

Solving (Eq. 5) for U,;,, we cbtain a recurrence
scheme:
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U " =(2- 7rt )U ir |:Ul+1 J +U., J -U, J J © Table 1: iinite difference result of the IBVP
i=12,..n-2
t 0 0.2 0.4 0.6 0.8 1.0
where, n is the number of grid points in the x-direction. g.l 8 g:i?;;g 8:32;2? g:gg;ﬁf g:ii;gg g
Accordingly, the number of grid points in the t-direction 02 o 0.18163 0.20388 029388  0.18163 0
w 1ll be designated by m. 03 0 -0.18164  -0.293%0  -0.29390  -0.18164  ©
0.4 0 -0.47553 -0.76942 -0.76942 -0.47553 0
STABILITY AND CONVERGENCE ANALYSIS 0.5 0 -0.58778 -0.95105 -0.95105 -0.58778 0
. s : : ui0,t) =0
Using Von Neumann’s method or Fourier series B.Cs = (0.1) D<t<b (9)
method, namely, ufa,t) =0
U:,] _ eJ:IBmeujk
_ u(x,0) = sin(nx)
in (Eq. 6) (where, B and « are any real mumbers), the IL.Cs = D<x<a (10)
amplification factor £ = e* is easily shown to be: u,(x,0)=0
e :(1 _ ) N i(elph 1[5h) r/( eflgh) Here, we give the numerical solution of the IBVP for
2 x=0(02)1,t=0(01) 05 c¢c=2 Here,a=1,b=05.
=1-r* +1r* cosph —irsin ph Forr=1 (Eq. 6) becomes:
=1-1r’+17| cos’ — Ph stB— —irsinh . 11
2 2 U,,=(U_,+U_,)-U i=1(14 (1D

{1 — 2r¥sin’ B} —irsinph

The boundary conditions in finite difference form are:

where, r = cl/h. This gives:

U, =o, j—0(1)5} (12)
U, =0, j=0{1)5
7| ‘{1 _ortsin? %} _irsin Bh‘ >
P while, the initial conditions are:
{ 1 2r¥sin } ( rsmBh)}
U, , =sinax, i=0(1)5
Bh oo pnl’ ' _ (13)
1-4rsin’ +4r sin® — + 4r’ sin” Bhcos” — (UllfUl_l)Uk:O,l:O(l)S
2 2 . '
{1 4r2 sm4 Bz } Applying the Eq. 11-13, successively to generate
(7) rows and computing the pivotal value in each row

produce the fimte difference solution to the IBVP

from which it follows that |£|<1 if O<r<1. Hence, the (Eq. 6)  cotrected to five decimal places shown in Table 1.
1s stable 1f O<r<l.

The convergence of the scheme follows the ANALYTICAL SOLUTION OF THE IBVP
Courant et al. (1928) (C.F.L.) condition for convergence,
which applies to explicit t difference replacement of Using d° Alembert’s method the required analytical

hyperbolic equations. It requires the (Eq. 6) to be solution for the TBVP (Eq. 8)-(10) is:
convergent when O<r<1l. Thus, the stability condition

coincides with the C.F.L. condition.
u(x,t)=sinmxcos2nt (14

NUMERICAL ILLUSTRATION: WAV E

PROPAGATION PROBLEM The analytical values computed for x = 0 (0.21) 1 and
t =0(0.1) 0.5 and corrected to five places of decumal are

PDE =u,(x,t)=¢’u, (x,t),0<x<a, 0<t<b (8) shown in Table 2.
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Table 2: Analytical result of the IRVP
X

t 0 0.2 0.4 0.6 0.8 1.0
0 0 0.58778 0.95106 0.95106 0.58778 0
0.1 0 0.47553 0.76942 0.76942 0.47553 0
0.2 0 0.18163 0.2938% 0.29389 0.18163 0
0.3 0 -0.18163 -0.2938% -0.29389 -0.18163 0
0.4 0 -0.47553 -0.76942 -0.76942 -0.47553 0
0.5 0 -0.58778 -0.95106 -0.95106 -0.58778 0

A BASIC PROGRAM FOR THE FINITE DIFFERENCE
SOLUTION OF THE WAVE EQUATION

REM Finite Difference Solution for the Wave Equation
REM

DIM U(100,100)

DEF FNF (I) =SIN (H* I* 3. 142)

DEFFNG () =0
INPUT A
INPUT B
INPUT C
INPUT M
INPUT N
H = A/N-1)
K = B/M-1)
R = CxK/H
R2 = R™2
R22 = RxR/2
51 = 1-R"2
52 = 2-2xR"2
Check out loop number 1
FORJ = 0TOM-1
Uuon = 0
NEXT J
FORJ = 0TOM-1
UN-1,7) = 0
NEXT J
Check out loop number 2
FORI = 1TON-2
ugo = ENFQ@D
Ul = SIxFNF(I) + Kx FNG (I)+ R22%(FNF (I+1) + FNF (I-
1)

NEXTI
Check out loop number 3
FORJT = 2TOM-1
FORI = 1 TON2-
Ud.n = $2xUII-D+R2=(UT-1,T- 1+ UI+1, J-10-Ud, I-2)
NEXT I
NEXT J
Check out loop number 4
CLS
LPRINT = L PRINT
FORJ = 0TOM-1
FORI = 0TON-1
LPRINT U, Iy,
NEXT I
LPRINT = L PRINT
NEXT J
End

The  computer values  obtained for the

particular data A = 1, B=05C=2 M=6 N =6
and rounded-off to five decimal places are shown in
Table 3.
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Table 3: Computer result of the TBVP
X

t 0 0.2 0.4 0.6 0.8 1.0
0 0 0.58785 0.95111 0.95098 0.58752 0
0.1 0 0.47555 0.76942 0.76931 0.47529 0
02 0 0.181356 0.29376 0.29376 0.18179 0
0.3 0 -0.18179 -0.29413 -0.29376 -0.18156 0
0.4 0 -0.47569 -0.76931 -0.76942 -0.47555 0
0.5 0 -0.58752 -0.95098 -0.95111 -0.58785 0
DISCUSSION

We observe that the recurrence relation (Eq. 6) for the
wave (Eq. 1) 1s stable when the dimensionless parameter
{Courant mumber) r is equal to or <1 and convergent in the
sense of Courant, Friedrichs and Lewy (C.F.L.) condition
for convergence; that is, the central difference scheme
(Eq. 6) 1s convergent for O<r<l. Thus, stability and
convergence conditions for (Eq. 6) comcide. From (Eq. 7)
the (Eq. 6) 15 evidently dissipative for long wave lengths
and the order of dissipativity is four. Thus, the central
difference scheme is better than the composite scheme
(Turkel, 1977), in which the order of dissipativity is six.
Also the central difference scheme allows more refinement
of the mesh size than the composite scheme and this
refinement property helps to unprove the accuracy of
the central difference scheme. Finally, comparison of
Table 1-3 reveals that the central difference scheme based
on the TBVP agrees reasonably with the analytical and
computer result, thus attesting to the accuracy of the
central difference scheme.
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