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Abstract: Understanding the dynamics of predator-prey species can lead us to insights in the species
interactions. In this study, a Mathematical Model of two predators sharing a prey in a homogeneous
environment is introduced where different functional responses are used to describe rates of consumption of
the prey. The model represents a Kolmogorov Type Prey Predator System. The equilibrium points of the system
are obtained and their stability 1s discussed. The conditions of coexistence and extinction for the predators are
obtained for a non-periodic seolution and this depends on the conversion efficiency of prey biomass into

predator offspring.
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INTRODUCTION

The basic Prey Predator Model describes an
mteraction of two species by a system of non-linear
coupled first order ordinary differential equations and has
been studied extensively. Interactions involving more
than two species have been proposed for certain
ecological phenomena. These mteractions can show
complex dynamical behaviours (Hsu et al, 2001,
2003; Lv and Zhao, 2008, Upadhyay and Naj, 2009,
Upadhyay and Chattopadhyay, 2005, Upadhyay ef al.,
2007, Naji and Balasiun, 2007; Mougi, 2010, Kuang and
Beretta, 1998).

Research which mvolve coexistence and extinction of
the mteracting species has been investigated by some
researchers (Dubey and Upadhyay, 2004; Huo et af., 2009,
Kar and Batabyal, 2010). The coexistence and extinction
n three species systems have been studied mn particular,
a two predator one prey model of Kolgomorov type was
studied by Freedman and Waltman (1584) and he
proposed a number of conditions to be satisfied in order
for the system to coexist.

In this study, a Mathematical Model of interactions
two predators competing on one prey 1s introduced
different functional responses; Holling type I and II
functional responses are used. The coexistence and
extinction of species are studied theoretically to answer
the question of coexistence of the system and extinction
of one of the predators in two and three dimension models
and how they depend on the efficiency of biomass
conversion 18 mtroduced as research problem m this
study. Researchers use the numerical simulations to
explain the coexistence and extinction n the case of non-
periodic solution.

THE MODEL

A system of autonomous differential equations 1s
used to describe the dynamical interactions of a three
Species Food Chain Model in which two predators
compete on a prey. The logistic law describes the growth
rates of the prey and both predators with the carrying
capacity of predators depending on available amount of
prey. It was indicated in case two species (prey predator
model) through some researchers as May and recently
through Murray but we add the term (-uy) which have
been used in many Prey Predator Models to be more
realistic. Researchers have used this model i case two
predators one prey meodel to study some dynamical
behaviours with similar functional responses have been
used to describe the consumption rate of prey by a
predator in study (Alebraheem and Abu-Hasan, 2011,
2012). However, in this study, different functional
responses are used to describe the rates of consumption
of the prey x by the predators y, z the Holling type I and
the Holling type II for the predators y, z, respectively. The
system can be written as follows:

dx X Pxz
—=1X| 1—— |- oxy—
dt k 1+h Bx

dy ¥
——=—uy+Ry| 1- - ¥z (1)
dt Y 1){ K J WY

¥

% =-wz+ Rzz{lki}czyz

4

All the parameters and 1mtial conditions of the model
are assumed positive. Here, 1 13 the mtrinsic growth rate of
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prey; « and P measure efficiency the searching and the
capture by predators vy, z, respectively h, signifies
handling and digestion rate of predator z. In the absence
of the prey x, constants u and w are the death rates of
predators y, z respectively. R, = ejax, R, = e,px/1+h x
represent the numerical responses of the predators y and
z, respectively which describe the change in the
population of predators due to prey consumption.
Further, e, and e, indicate the efficiency of conversion of
consumed prey into predator births. The camrying
capacities k. = ax, k, = o,z are proportional to the
available amount of prey as proposed by Leslie
(Gazi and Bandyopadhyay, 2008). Lastly, ¢, and c,
measure the mterspecific competition between predators
that is the interference competition of the predator z on
predator y and vice versa.

Researchers rewrite the system of Eq. 1 m a
non-dimensional form to reduce the munber of parameters
from 13-9 which make the analysis less complicated.
Researchers use the following transformations:

=t X=a, §=—2, E:i’a:kalaj:k%s,a:i
k ok o, T T o
g =250 =Y =M 5 %K oGk
a, r r . r r
Researchers then have:
[xz
— =x(1-x)—oxy— =xL{x,y.z
@t (1-x) thlB (x.y.2)
d
?)t( =-uy+ elt:)\',xyfeIOLy2 - yz =25 (XY,z) (2)
dz 5
T =—wz+te,Pxz—e,pz —c,yz=15,(x,v,2)

The initial conditions of system (2) are:

X0 =x,y0)=y,, 2z(0)=2,
Where:
0<x), ¥ 2, <1

The functions, L, S;; 1 =1, 2 are smooth continuous
functions on R,* = {x, v, z)¢ R*:

Boundedness:
Theorem 1: The solution of the system (2) for >0 in R,
18 bounded.

Proof: The first equation of the system (2) that represents
the prey equation is bounded through:

3)

dx
— < x(1-x
1 (1-x)
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The solution of the Eq. 3 is x(t)<1/1+be™, where
b = 1x/%, = (1/x4-1=0 is the constant of integration.
Hence:
X() <1, ¥t =0

Next, reserachers prove that:
X(O+yt)y+z(t)=sL,¥t=20
Researchers define the function:
Pty =x(®)+y(t)+z(

Taking the time derivative of the function P,
researchers have:

dP dx dy d=z
- = L
dt  dt dt 4t

Bz

= (1-x)—ay - T hpx X+ (-ute,0x-e,ay-¢,Z)y +
1
-w+ Sfx _efz —e,y |z
1+ Px  1+hBx

(h

Since, the solutions initiating in remain R’ in
nonnegative quadrant and all the parameters are positive,
researchers can assume the following:

ccll—i) < (1-x)X + (—ute ox-eay)y+

it e,Px _ e,fz ;
I+h Bx  1+hpx
(5)
However:
max, {x(1-x)} :% (6)
So, by substituting, Eq. 5 becomes as follows:
dP 1
— £ —+(-ute0x-e,0y)y+
o g uteox-eay)y
- efx  efiz ;
1+hBx  1+hpx
(7
Rewrite this as:
dP 1
— S —+(-ute,0x —e,0y) y+
5 =T Y)Yy
e SPX eBZ b
1+hfx 1+hfx
(8)
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That is:

dp 1
—+ PO = 7 +xtH(-uteox-e 0y + 1)y +

dt
Since, x(t)<1, researchers have:
dp + Pt = Bl +(—uteox—edy+ly+
dt 4
{—w + &Pz + 1}2

1+h fx
_ 2
max, {(—u+eo—euy+ 1)y} = dteo—u)y

4e,00
max, {_wezﬁx_ezBZHH
: 1+hfBx  1+hpx
_ (et (-14h,B)(-1+w))+(e, B-(1+h B)(-1+w))
de,p

)
e,px
1+h fx

ez +1
1+h,fBx

(10)
e,px
1+h, Bx

But:
(1L

And:

(12)
Nonnegative values are taken in Hq. 11 and 12.
Hence, Eq. 10 becomes:

i—f-ﬁ-P (t<Q (13)
Where:
(e,B+ (-1+h,B)-1+w)) +
Q= 1 54 (1+e,a-u)* .\ (e, B-(1+h,B)(-1+w))
4 deo e,
(14)

Thus, P(t)<Q+ye™, ¥ is a constant of integration. As
t-eo researchers have P(t)<Q.

CONVERSION EFFICIENCY

In this study, researchers present some ecological
reasons to support the research problem n this research.
The time varying flows of biomass and energy in a
species can be examined through the construction of a
dynamic mass-energy budget specific to the species but
such a budget depends on efficiencies of metabolic
conversion which are unknown. These efficiencies of
conversion determine the overall yields when food or
storage tissue is converted into body tissue or into
metabolic energy (Pastor, 2008).
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There are some ecological reasons that affect the
conversion efficiency in prey predator systems. This
includes the proportion of the kill preys which are
consumed by predators. Environmental variations,
considered the exogenous mechamsms, affect indirectly
on the predator attack rate or the conversion efficiency.
The prey is also influenced through co-vary with the
envirommental variation (Brassil, 2006).

ANALYSES OF TWO DIMENSION SYSTEMS

The system of Eq. 2 is in a form similar to a
Kolmogorov type model which iz a more general
framework to model the dynamics of ecological systems
with predator-prey interactions, competition, disease
and mutualism. Results based on the Kolmogorov
Model are applicable to two-dimensional systems only
(Freedman, 1980). Researchers divide the system (2) into
two subsystems. The Kolmogorov analysis is useful to
obtain some scenarios of extinction of the predators in
these subsystems and some results will be used in the
study.

The first subsystem: By assuming the absence of the
second predator z, the first subsystem is as follows:

dx

— =x((1-x)-ay)

dt (15)
d

d%[{ = —y(uteax-gay)

By applying the Kolmogorov theorem, researchers
have the following conditions:

> (16)
o

If this condition 1s satisfied then the predator y
coexist with the prey x. However, if:

(17)

IA

R|=

then the predator y will go to extinct.

Example 1: If the values, u =047, ¢ = 1.3, e, =0.35 are
taken where the value of e, = 0.35 1s less than the value of
we = 0.361 538 the condition (17) is satisfied therefore, the
predator y will be extinct as it 1s shown in Fig. 1.

However, if e, = 0.5 with the values of u and « fixed
as before where the value of e, = 0.5 13 bigger than the
value of Wu = 0.361538 the condition (16) is satisfied and
the predator y will coexist with the prey x.
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Fig. 1: Time series of dynamical behaviour of the
subsystem (21)atw = 0.52, h, = 0.04, p = 1.65,
e, = 0.28

The subsystem (15) has three non-negative
equilibrium points. The equilibrium point E,5, = (0, 0)
always exists and 1t 13 a saddle point. The equilibrium
point B, = (1, 0) always exists and it 13 a locally
asymptotically stable point with the following condition:

useo (18)

If the condition (18) is violated then the equilibrium
point E,; is a saddle point. The equilibrium point:

u+el

e,0-u
Ep =(R§) =] —,—
s =Y (cloﬁ-el elot2+elot}
of subsystem (15) 1s positive if the followng condition
holds:

ea>u (19)

The equilibrium En&§  pont 15 locally
asymptotically stable if the following condition is
satisfied:

r31205+u-~-e1 > e, (20)

However, it is observed that this condition is always
satisfied since researchers have ec>u for a positive
equilibrium pomt and it 18 derived from Kolmogorov
condition. Hence, the equilibrium point E»(&.¥) is always
locally asymptotically stable it is not only locally stable
but globally asymptotically stable. The following theorem
proves this assertion.

Theorem 2: The equilibrium poimt Esn(%7) is globally
asymptotically stable inside the positive quadrant of x-y
plane.

Proof: Tet G (x,y) = l/xy G i3 a Dulac function it is
contimwously differentiable in the positive quadrant of
x-y plane, A = {(x, y)[x>0, y>0}.

Let:

N, (x,y) = x(1-x)-0xy,

N, (X,¥) = —uyte,axy-eoy’
Thus:

oax oy vy X

A(GN,,GN,) :@+@:j, €0

Tt 1s observed that A (GN,, GN,) 1s not identically zero
and does not change sign in the positive quadrant of x-y
plane A. So, by Bendixson-Dulac criterion there is no
periodic solution inside the positive quadrant of x-y plane.
The E, 1s globally asymptotically stable inside the x-y
positive quadrant of plane.

The second subsystem: By assuming the absence of the
first predator y, the second subsystem 1s as follows:

g = x[(l-x) - Bz ]
dt 1+h,fx

%:z it efx  efz
1+hfpx  1+hfpx

(21)

Similarly, by applying the Kolmogorov theorem to the
subsystem (21), the following conditions are obtained:

o, > w (22)

If this condition is satisfied then the predator z
coexist with the prey x:

e, < w (23)

However, if then the predator z will go to extinct.

Example 2: The values w = 052, h, = 0.04, p = 165,
e, = 0.28 are assumed where the value of e, = 0.28 is less
than the value of:

+
WhBHW _ 317230

The conditton (23) 13 satisfied; consequently the
predator z will be extinct.
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Fig. 2: Time series of dynamical behaviour of the
subsystem (21) at w = 052, h, = 0.04, p=1.65,
e, = 0.55

However, if the value of e, is changed to become 0.55
with the same fixed values of w, h, and p where the
value of e, = 055 15 bigger than the value of
wh, p+w/p = 0.317232, the condition (22) 1s satisfied and
the predator z will coexist with the prey.

There are three non-negative equilibrium points of
the subsystem (21). The equilibrium point E,;, = (0, 0)
always exists and 1t 13 a saddle point. The equilibrium
point E,;, = (1, 0) always exists and it is a locally
asymptotically stable point with the following condition
(Fig. 1 and 2):

ws P (24)
1+h,fB

If the condition (24) is violated then the equilibrium
point E,,, is a saddle point. The equilibrium point Ey,(%.2)
of subsystem (21) is obtained which X is specified by the
positive root of the quadratic equation:

ol LY Vel LW Ly 25
h1 eZ hIB hIB eZhIB

5 é (1-%)1+h f2) (26)

And:

The equilibrium pomt Eu&.2 13 locally
asymptotically stable provided the following conditions

hold:

qp oz bRz 27
1+h % (1+hp&Y

Theorem 3: The coexistence equilibrium pomts of
subsystems (15) and (21) are locally asymptotically stable
under the condition (20) of the first subsystem and the
condition (27) of the second subsystem.
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Fig. 3: Time series of dynamical behaviour of the
subsystem (15)atu=047, «=1.3, e, =0.35

Proof: The theorem can be proved by applying
Routh-Hurwitz criteria of characteristic equations that are
obtained through the variational matrices.

STABILITY ANALYSIS OF THREE
DIMENSION SYSTEM

The system (2) has five nonnegative equilibrium
points. B, =(0, 0, 0) and E, = (1, 0, 0) exist obviously (i.e.,
they exist without conditions on perameters). However,
on the coordinate axis y or z, there are no equilibrium
points. There are two equilibrium points for two species,
the first bemg the equilibrium pomt:

E, =3, 0)_(u+el,elg-u, }
g0+e el ted

The equilibrium point E, exists m the interior of
positive quadrant of x-y plane if it satisfies the
Kolmorogov condition and the condition (Eq. 19).

At the equilibrium point Ei(:0.2), X and % are
specified by Eq. 25 and 26. The equilibrium point E, exists
in the mterior of positive quadrant of x-y plane if it
satisfies the Kolmorogov condition and:

0<® <1 (28)

By computing the variational matrices corresponding
to each equilibrium point, the local dynamical behaviour
of equilibrium points are nvestigated.

Figure 3 and 4 the equilibrium pomt E; = (0, 0, 0) 1s an
unstable manifold along the x-direction but a stable
manifold along y-direction and along z-direction because
the eigenvalue m the x-direction 1s positive while the
eigenvalues in the y-direction and z-direction are
negative, consequently the equilibrium pomt E; 15 a
saddle point.
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Fig. 4: Time series of dynamical behaviour of the
subsystem (15) atu =047, ¢ =1.3,¢ =05

The equilibrium point E, = (1, 0, 0) 13 locally
asymptotically stable, provided the conditions (18) and
(24) are satisfied. However, if the conditions (18) and/or
(24) are not satisfied then the equilibrium pomnt E, 15 a
saddle point because it is stable in the x-direction because
the eigenvalue in x-direction 1s negative for all cases.

The equilibrium point E,=(5%0) has
stability behavior as the equilibrium pomnt En&EFH of
subsystem (15) on the x-y plane but in the z-direction (i.e.,
orthogonal direction to the x-y direction) of equilibrium
point E, it 15 stable provided the following condition
holds:

the same

e,px
1+h Bx

[P

W+ (29)

The equlibrium point E =&.0.2) is stable in the x-z
plane if the condition (27) is satisfied while in the y
direction (i.e., orthogonal direction to the x-z plane) of
equilibrium point E, 1s stable with condition:

utc,z > e,oX (30)

For non-trivial equilibrium points E.=(.%.2) it 1s
given via the positive solution of system of algebraic
solution as follows:

Bz _
1+h,Bx -
—ute0x-¢ 0y-c,z =0

e,fx  eB .
1+h pBx 1+hBx

(1-x)-auy-
(31)

-c,y =0

The variational matrix of E, 1s:
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-
g1+ W2 ) _p 5[ P
(1+h,pR)* 1+h %
e oy 8,0y -y
et eh, BZZ 7 oz -z b
(1+h,px) 1+h %
h, h, h,
=/ h, h, h,;
hy by hy
Where
.
h, =% —1+7hlBZ_2 hy, = o, b, = x| —P— |,
{1+hx) 1+hfx
_ _ _ ef+eh Pz _
h,, =e05.h,, = -0y, hy,; = -7, h,, _{W]L

e
1+hpx

h,, =—¢,2,h,; = z[

|

The characteristic equation of the variational matrix
1587
A+ HAHAH, =0
H, =-(h;, +hy,+h;)
H, = (hyhy, thyyhys+hy b +hy b, -
h12h21'h13h31'h32h23)
H; = (h;hyhy, +hyhy by +hy b, -

hnhzzhaz'hmhszhw 'h12h23h31)

According to the Routh-Hurwitz criterion, E,=(%.7.2)
18 locally asymptotically stable if the following conditions
hold:

H, >0 (32)
H, >0 (33)
HH, >H, (34)

Researchers suppose the following theorem which is
proved through the earlier analysis.

Theorem 4:

The equilibrium point B, = (0, 0, 0) 1s a saddle point
with locally stable manifold in the y-z plane and with
unstable manifold in the x direction

The positive equlhbrlum pointE, =(1,0,0)is locally
asymptotically stable i the x-dwection but it 1s
locally asymptotically stable in x-z plane 1if 1t holds
the conditions (18) and (24). The equilibrium pomt 1s
a saddle point if the conditions (18) and/or (24) are
not satisfied
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The equilibrium E.=(&.0.2) point is positive under
condition (19) it is locally asymptotically stable if the
condition (20) holds

The equilibrium point E =G 0.%) is positive under
condition (28). The equilibrium point E; is locally
asymptotically stable provided the conditions (27)
and (30) hold

The non-trivial positive equilibrium point E,= (&.7.2)
is given through the positive solution of system (32)
it is locally asymptotically stable provided the
conditions (32), (33) and (34) hold

Corollary: The equilibrium points E, and E, are unstable
in z-direction (i.e., orthogonal direction to the x-y plane)
and m y-direction (i.e., orthogonal direction to the x-z
plane), respectively if the condition (29) of E, and the
condition (30) of E, are not satisfied (violated).
COEXISTENCE AND EXTINCTION

The coexistence problem was studied by
Freedman and Waltman for equations of Kolgomorov
type. For a population x(t), the coexistence 1s defined as
follows: if x(0)>0 and lim 1nf, . x(t)=0, x(t) persists. The
analysis for non periodic solution (i.e., no limit cycles) is
presented where the system (2) has non periodic solution
under conditions (20) and (27) of planar equilibriums in
the respective planes. The boundedness of the system (2)
is proved (Theorem 1). The stability in positive
orthogonal directions of x-y, x-z planes are given by the
conditions (30) and (31), respectively.

Researchers apply the following hypothesis of
Freedman and Waltman (1984) to ensure they are
satisfied. Researchers use y, = y and y, = zto simplify the
notations.

H1: x is a prey population and y, z are competing
predators living exclusively on the prey, i.e.:

AL 0,98 050y, y)<0 B<o, 1j=12

dy, ox %,

H2: In the absence of predators, the prey species x grows
to carrying capacity, 1.e..
L(0, 0, 0) > 0, %L(x, v, v, =-1<0
Zk>03L(k 0,0)=0
Herek=1.

H3: There are ne equilibrium pomts on the y or z
coordinate axes and no equilibrium point in plane.
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H4: The predator y and the predator z can swrvive on the
prey; this means that there exist pomnts F.:(% % 0) and
Ey=(% 0.2) such that:

LEZ §,00=5(X 7 0)=0
And:
L% 0,2)=8,(%,0,2)=0,% §,.%, >0
And:
X<k X<k

If the above hypotheses hold, if there is no limit

cycles and if:

S,(%,0,2)>0,8,(%, 7 0)>0 (35)

then system (2) coexists. Tnequalities (35) implies that:

—ute0k-¢,z>0

u+tc,z (36)
=e »>—1=
ax
-w+ GZBX—' 7025'/ =0
1+hIBX (37)
e, > (W+cz§f)(~1+h1[3>"()
653

The system (2) coexists if the conditions (36) and (37)
are satisfied. In the case condition (36) 1s satisfied and the
condition (37) 1s not satisfied then the second predator z
will tend to extinction while the first predator y survives.
In the same mammer if the condition (37) is satisfied but
the condition (36) 1s not satisfied then the first predator y
will tend to extinction while the second predator z
SUIVIVES.

NUMERICAL SIMULATIONS

Different values of the parameters e, e, are
considered. The coexistence or extinction of one of the
predators i non periodic solution (1.e., no limit cycles)
can be shown numerically. The parameters e, e, are
chosen because of their importance. The parameters
include numerical responses which they are with the
functional responses to form the main components of
prey predator models (Rockwood, 2006). Also, the
parameters are wmvolved to determine mtraspecific
competition coefficients m our model. In additionto e, e,
measure the efficiency of conversion.

The values of the parameters are selected where the
stability conditions (20) and (27) hold that means non
periodic solution (ie., no limit cycles). The other
parameters and initial conditions are fixed as follows:



Res. J. Applied Sci., 8 (5): 286-295, 2013

1.0~ " Preyx
0.8

0.6

Density
~y

0.4

0.2+
|

0 20 40 60 30 100 120 140
Time

Fig. 5. Time series of dynamical behaviour of the system
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Fig. 6: Time series of dynamical behaviour of the system
(3)ate, =24
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Fig. 7. Time series of dynamical behaviour of the system
(3)ate, =04

=17, B=1651u=047,¢ =01, ¢, =0.06,
h, =0.004, w = 0.67, x(0) = 0.5, y(0)= 0.2, 2(0) = 0.2

Two different sets of numerical sunulations are
implemented. Tn the first set, the value of is changed while
the value of e, 15 fixed at Fig. 5-7 show the effect of the
efficiency conversion on existence and extinction of one

of the predators.
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Fig. 8 Time series of dynamical behaviour of the system
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Fig. 9: Time series of dynamical behaviour of the system
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Fig. 10: Tune series of dynamical behaviour of the system
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(3)ate, =05

There is coexistence of three species when the values
of e, (e, = 2.4)and e, (e, = 0.75) are near to each other
this is shown in Fig. 5

There is extinction of predator z when the value of e,
(e, =0.78) is increased as shown in Fig. 6

In Fig. 7 there 1s extincion of predator v when
e, (e, = 0.4) was decreased
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In the second set, different values of e, are used
while the value of are fixed at 0.78 and the same values of
other parameters are used as in the first set.

There are correspondence results for survival and
extinction of the predators, depending on efficiency
conversion. From Fig. 8-10 the following results are
obtained:

Three species coexists when the values of e
(e, =0.70) and e, (e, = 0.72) were near to each other
this is shown in Fig. 8

When increasing the value of e, (e, = 3.75) there 1s
extinction of predator y as is shown in Fig. 9

There 1s extinction of predator z when e, (e, = 0.5)
was decreased as is shown in Fig. 10

The results demonstrate the important role of
efficiency conversion for predators’ survival.

CONCLUSION

In this study, a continuous tinme model of interactions
of two competing predators sharing one prey in
homogenous environment 1s introduced in which different
functional responses are used. The model is divided into
two subsystems n order to apply Kolmogorov theorem;
consequently the stability of equilibrium points of two
subsystems are discussed. The equilibrium pomts and the
stability of equilibrium peints of three dimension system
(2) are obtained. Theoretical analysis of coexistence the
system and extinction one of predators is presented which
explain the conditions of coexistence and extinction by
depending on the efficiency conversion.

Numerical simulations show that there is extinction of
one of predator, depending on the efficiency conversion
n the two predators. If the value of conversion efficiency
of first predator is less than the other then the first
predator will go mto extinction while the other survives
and vice versa. However, the three species can coexist
when the values of conversion efficiency for two
predators are near to each other.
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