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Abstract: The study considers the basis of the new method of defimition of the stress-stramn state of masorry
mcluding teclmological factors of its research. Shortcomings of the existing masonry design codes in Russia
and worldwide were considered and method of determining the irregularity of mortar consistency is shown. The
proposed algorithms allow to determine the stress-strain state of the masonry of arbitrary geometry, strength

and geometric properties of masonry materials.
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INTRODUCTION

Not with standing the fact that more and more
non-typical civil construction continues to increase with
the use of brickwork as the basic material of the bearing
structures and continuous scientific interest concerning
the issue of these construction, the method used
currently in the designing codes in Russia and abroad for
the calculations of the bearing capacity has not changed
much since, then middle of the last century (Onishchik,
1937) and there are more diverse experimental data
towards the unreasonable huge allowance of bearing
capacity of masomy with the use of modern bricks and
mortars (Donchenko and Degtev, 2013).

Despite the fact that the load resistance of the
materials composing masonry (brick and mortar) has been
studied mto details, the brickwork still remains one of the
least rational construction materials, the strength of the
masonty composite is far less stronger than that of the
bricks and mortars separately. To a lesser extent than
others, the masonry increases as the construction
material. Tf in the 50 sec of the last century, the average
strength of the concrete was about 20 MPa, at the end of
century it was up to 50 MPa and currently it is possible to
obtain more than 100 MPa but at the same time the
highest strength of the unreinforced masonry has
increased from 4-8 MPa (Belentsov et af, 2010). In
particular, it concerns the most widespread types of
masonry made with general purpose cement-sand mortars.

MATERIALS AND METHODS

On the whole, the principal problem of the masonry
designing codes updating is characteristic as for the

countries of the FHastern and Western FEurope. The
common principles of designing and calculation of
masonry, underlying the European Standards (BS EN,
1996) are also based on the empirical dependencies which
mostly idealize the conditions of the masonry structure to
the detriment of the authenticity of the definition of its
strain-stressed state. Eurocode 6 (BS EN, 1996) contains
the simplified method of calculation for the most
widespread space-planning decisions of civil brick
buildings: The span of the floors and roof supported by
the walls shall not exceed 7 m, the clear storey height shall
not exceed 3.2 m and values of the variable actions on the
overlapping shall not exceed 5.0 kPa. The characteristic
compressive strength of masonry f, is determined
according to Eurocode depending on the parameters of
the mortars bed joints: For masonry made with general
purpose mortar:

f, = Kf7£° (1)

For masonry made with thin layer mortar, in bed joints
of thickness 0.5-3 mm:

fk _ beu.xs (2)
Where:

f, = Normalized compressive strength of the brick

f, = Compressive strength of the mortar, corresponding

to its strength class

The K constant depends on the type of masonry
units and mortars and changes within the range of
0.25-0.80. In particular for the layer of clay and calcium
silicate units with general purpose mortar value of K is
0.4-0.5.

Corresponding Author: Andrey E. Naumov, Belgorod State Technological University Named after V.G. Shukhov, 46 Kostyukova,

308012 Belgorod, Russia



Res. J. Applied Sci., 9 (11): 893-900, 2014

According to the Russian Building codes (SP)
15.13330.2012 (2012) Masomry and remnforced masonry
structures as well as based on them the building codes of
masomry in the Eastern Europe, the compressive strength
of masonry 1s determined via the tables made on the basis
of the formula of prof. L.I. Omshchik (Russia, 1895-1968),
specified experimentally (Omishehik, 1937):

R,=AR,|1- (3

Where:
R, and R, = Compressive strength of brick and mortar

M = Capacity reduction factor for weak mortar
A = Constructive index determined by Eq. 4
~ 100+R, @
100m +nR,

The a, b, m, n, the empirical constants depending on
the type of masonry. Thus, the compressive strength of
masomry by Eurocode 6 as well as by the methods based
on the Russian Building codes directly depends only on
the strength of brick and mortar and indirectly, via the
various adjustment constants on a number of additional
factors, e.g., mortar bed jomts thickness. The use of
methods with such restrictions does not allow a full
consideration of the deformability, the geometry of
masonry construction and what 13 more important, the
technological factors of masonry works which contradicts
the principles of rational construction designs.

Even the superficial analysis of masonry design
building codes allows the determmation of two main
potential directions of their improvement. First, 1t 1s the
introduction of the quantitative clarity amendment into
the influence of geometrical size of units and mortar bed
joints mto its bearing capacity when building codes
provide only average calculation value of masonry
strength for a certain number of height ranges of the brick
having scope of 200-300% (SP 15.13330, 2012). Secondly,
1t 18 reasonable quantitative calculation not only seasonal
(summer/winter) conditions and arrangements of brick
walls (external/internal) but also other technology factors
connected with the unit geometry imperfection and the
quality of masonry works (uneven height, filling and
consistency of mortar bed joints, masomry pattern, etc.)
which still do exist only fragmentarily in different scientific
works (e.g., the coefficient of the bricklayer’s hand
mentioned by Rayzer (1990)).
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Currently, the world industry of construction
materials produces a large number of various masonry
units  significantly differing by sizes, strength and
deformability. The production technologies of masonry
works likewise considerably differ, the degree of readiness
of mortar for use, the methods of bricklaying, the umt
geometry imperfection and other factors result in the most
diverge technological defects i the idealized design
model of masonry composite. In this regard, the strength
determination of the masonry from units of various size
and deformability and also taking into account the real
technological errors of bricklaying should be based on of
mathematical modeling of the deformation and destruction
of the loaded bricks, depending on the geometry,
deformability and the general physical imperfection of
mortar bed joints.

The set of technological imperfections of masonry
composite, m the opinion can be generally expressed
through the physical heterogeneity of the horizontal
mortar bed joints characterized by variable passive
pressure on the overlapping unit (Naumov and
Ezhechenko, 2007). The researches of researchers allow to
presuppose that this integrated defect which has been
evenly distributed across the bed face, m this connection
despite the spatial loading of masonry the stress problem
could be considered as plane (Naumov, 2010).

The design model of single unit of masonry with
generalized teclnological imperfections of mortar bed
joints is shown in Fig. 1.

Separate evaluation of brick and jomts loadings
allows to set the plane stress problem of masonry units
(Fig. 1) as plates mterhnked by contact stresses and
deformations, possessing a set of characteristics:
geometrical 1, h, m h,, physical F, v, m E, (x), v.;
external loads: axial of (x), of (x), o} (x), & (x) and lateral
t{“(x),t;“(x),tf’(x),tg (X)

The greatest commonness for this type of stress
problem are the results received on the basis of solutions
of plane stress problem of theory of elasticity which are
presented using expression of the external load and
stresses in the form of infinite trigonometric Fourier series
(Alexandrov and Potapov, 1990).

Determination of stress-strain state of a plate is based
on entering stress function ¢ (x, y) and approximating of
external loading by periodic functions both for a masonry
unit and for a mortar bed jomts (Fig. 2):

s

o(x.y)=
¢k(X=Y)

q= qum sin (o, x )
s

o, (%, ¥ )

.
1l

1

E (y)sin{ax);0, = kn/l, (5)

=1, + itkm cos(o,x)
pam
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Fig. 1: The design moedel of single unit of masonry with
generalized technological imperfections of mortar
bed joints (plane stress problem; mortar loads
signed with “m” index, brick loads with “by” index):
1: masonry unit, 2: physically uneven mortar bed
joints (X-axis loads are omitted)
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Fig. 2: External loads of the plate, presented in
trigonometric functions; a) axial load and b) lateral
loads

where, F(y) function for y-axis corresponds to kth
harmonic. The accurate solution of the task is defined
by the number of accepted harmonics (terms of series)

(Eq. 5).
The substitution of @ (x, ¥y) from Eg 5 in the
Maxwell-Frie’s biharmonic Eq. &

2 2
v{?j} 2;1’} e
results 1n:

F, (y)ccfg cos( o, x)— 2aiF1:’(y)cos(ozkx)+

EY{y)cos(ax)=0

(6)

F(v)-204E (v)+E(y)=0 (7)

The common solution of Eq. 7 18 (Alexandrov and
Potapov, 1990):

E (y)=Ae™ +Bye™ + C,e *' 4+ D,ye (8)
Or:
E(y)=C,chla,y)+Cya,yshlo,y)+ (9)
Cy shioyy)+ Cpo ych(oy y)=F" )+ ()

Where the first and second segments in the right part
represent the amplitude of stress function for symmetric
and asymmetric parts of the soluttion of the task,
respectively. On condition of omitting the volume loads:

2 @
G, za—?zkz:csxmsm(oth)
=1
2 @
o, :i?:;s?sin(akx) (10)
=1
¥ S .
T= => 1%cos{o,x
20 S i)

where for the symmetric part of solution:

o, = [C,chio,y)+C, (2chio,y) +a,y shio,y)]

= — o, [Cchloy) + C .y shioyyl]
"= oy [Csh (e, y) + C (shioy,y) +a,y chlo, y))]
(11)
For the asymmetric part (in which “sh” replaces “ch”,
and C,,-C,, and Ha C,,-C,, ).

G

=g xB

- lei [Cyshic,y) + Cy, (Zsh{o,y) + o,y chioy v
- 0'“12< [Cyshio,y) + Cy o,y chio,y)]

™ = a; [C,chio,y) + C,, (chio,y) + o,y shic,y)]
(12)
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The deformations of the plates boundaries where
v =z¢ are determined by Eq. 11 and 12 in the generalized
Hooke’s law:

m

du oI -Vvo

g, = - sin (o, X
x E ¥ (13)
& o —vor |

g, :%:yism(ockx)

The integration of Eq. 13 gives for kth harmonic:

u= jsxdx =uy cos{a,x)
5

(14)

v= jsydy: vy sin{ao,x)

where for symmetric part of solution:

u'=-a,//E[C, (1+v) chic,y) +

CofZeh (o y) + {1+v) oy shio i} | (15)
vy =, /E[C, (1+v)shia,y) +

C{(1+v) g,y ch (o,y) — (1- v) sh(oyy)}]

for the asymmetric part:

u, =—a, /E[C, (1+v)ish(o,y) +
Cpi2sh (o, y) + (1+v) o yeh (o, y)i ] (16)
vy = —a, /E[C,, (1+v)ch{a,y)+
Cy {(1+v) ey sh (o)~ (1- ) chiog y)}]

The external loads presented in the form of
trigonometric Fourler series (Eq. 5) have the amplitude
values of ™ u t", determined on plate boundaries if y = +c:

ay —ajqk(x)sin(akx)dx

k i (17)
2
ty :a—kc’!tk(x) cos o, x ) dx

Equation 10-12 provide the possibility to define all
components of stress tensor of the plane stress problem,
(Eq. 14-16) linear displacements under the indicated by
equations of Eq. 5 and 17 external loads for kth harmonic
of senes (Eq. 5). Constants C,-C, are determined from the
boundary conditions of the plane problem.

The physical interaction of the brick and mortar can
be determined by considering two interrelated plates-umnit
and bed joint under boundary conditions (external loads)
as seen m scheme in Fig. 2. Equation 10-16 for each
analyzed plates contain 8 unknown constants ¢ -¢§ and cf-c7
for stress function where the mdex “b” belongs to the

plate of unit whilst “m” belongs to the plate of mortar bed
joint. Similarly, for the external loads there are 8 unknown
constants qy. a.dh,, 05, B by, 00

To determine their values we will define the boundary
conditions on the horizontal boundaries of plates. The
unit plate is between two joint plates, the top and bottom
joint plates are displaced across from each other at a size
of half of their length (0.51). From ths, for the bottom joint
plate, necessary to define the trigonometric functions
from x which are used in Eq. 5, 10 and 14 through the
basis of x-0.5]. The cormresponding transformations for
trigonometric functions have the following:

cos{ak[x_ln_ (~1)2 cos(m,x) k- even

k_
(71)Tl sin (o4, x ) k—odd
K

MID (-1)¢ sinot,x)
5

(-1) 2 cos(ax) k—odd

k—even

In this regard, the amplitude values of stresses and
deformations in the equations for the bottom umit
plate (y = ¢) consist of two separate equations for each of
the given representations.

The assumption of the equality of the displacements
of adjoining sides of plates allows to equate the amplitude
values of the vertical and horizontal displacements
determined by the equations of Eq. 15 and 16. For the
bottom edge of the joint plate and the top edge of the unit
plate:

vi(¢)=vy(-c);up(e)=uy (—c) (18)

For the top edge of the joint plate and the bottom
edge of the unit plate:

vy (¢)=va(-c);uy(c)=us(—c) (19

Similarly, it 1s possible to equate the amplitude values
of the normal and shear stresses which 15 set by the
Eq. 11 and 12. For the bottom edge of the joint plate and
the top edge of the umt plate:

o (e)=0c%(-c)=0
S (e)=ch(-e)=az (e)=ai(-e)  (20)

For the top edge of the joint plate and the bottom
edge of the unit plate:
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(21)

Having the boundary conditions of Eq. 18-21 and
setting the vertical loads equal to external vertical loads
(at the first estimation) and passive pressure of bed joints,
through the method of iterations it 1s possible to receive
constants of C-C, for both plates and at the same time
the analytical notion of stress-strained state of these
elements.

The determination of values of passive pressure of
the bed joints, distributed across the bed face q,(x) is
possible using the theory of calculation of short beams on
an elastic bed of the soil layer of final depth which is
justified for majority of the mortars having v, = 0.2-0.5 and
E, = 500-8000 MPa (changing in these ranges with load
growth up to the layer destruction), silicate and ceramic
bricks and stones with constant v, = 0.1-0.15 and E =
10000-1 5000 MPa. In this case passive pressure 1; depends
on modulus of subgrade reaction ¢ and on value of the
foundation (mortar bed joint) yielding w;:

L =c¢W,

=W, (22)

Prof. M.I. Gorbunov-Posadov (Russia, 1908-1991)
(Gorbunov-Posadov et ai., 1984) offered the formula for
determination of Winkler’s coefficient ¢, considering the
geometrical and deformative characteristics of the elastic
bed, presented in the case of the task in Eq. 23:

e (1-v,)E, (23)

(14 v, )(1-2v, )h,

where, B, v, h, are Young’s modulus, Poisson’s ratio of
mortar, thickness of the foundation (mortar bed joint),
respectively.

By Gorbunov-Posadov et al. (1984), the formula of
(Eq. 23) is experimentally well confirmed at h,, (10-20 mm)
<0.5 b (30 mm) where b is semi-width of the masonry unit.

In the horizontal bed jomts, surrounding each unit
areas, the geometrical (cavities, cracks) and physical
(mncreased deformability) unevenness of mortar bed joints
present. In most cases, the heterogeneities of mcreased
by 1.5-2 times deformability are localized across the bed
face within 1, length in the zone of adjomning of horizontal
and vertical mortar joints. Taking into account the
arrangement of the units into masonry this allows to offer
for the Young’s modulus of mortar E,, the distribution
function which is indicated in Fig. 3. The zones of

@ . 2 2, . 2

Emax

L2

min
E™'n
min
E™'n

max
m

max
E™n

Il 2|2

T

v e

Fig. 3: Design models of distribution of Young’s modulus
of mortar bed across the; a) bed face and b)
theoretical simplified

increased deformability of mortar joints are formedin
the central part of the bottom bed face and at the
edges of the upper bed face. Referring to analogical
heterogeneity of the soil base and representing its
character by trigonometric functions, it is possible to
present distribution of the uneven Young’s modulus of
mortar bed joint on the lower edge of the unit as follows
(Fig. 3a):

. 1
E:“+(E$“7E$m)sm = ,atxe| 0,2 |;
1 2

2

ESF, atxe [12; 21, +12];
2 2

E= 4 (B2 - E’“m)sin(in(x_ 2L -1, )],

L,

E (x)=

atxe[211+12;211+12}
2

Equation 24 reflects in Eq. 13 and 14 and also in
boundary conditions of Eq. 18 and 19, entering the
functions of the stress-strained state of the unit and bed
jount plates.
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Fig. 4: Model of a masonry umt as a short rigid beam on
an finite thickness elastic layer; h,: unmit height, q:
uneven loads, 1 passive pressure of the uniform
bed
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Fig. 5: Dimensionless profile of passive pressure under
short rigid beam on an finite thickness elastic layer
[12]: m = Hfa, where H: thickness of a bed layer, a:
beam semi-length

The existing in soil mechanics problem of mfmnite
values of passive pressure at the edges of a beam
on an elastic bed in not essential at definition of the
stress-strained state of the beam on a finite thickness
elastic layer (Fig. 4). As K.E. Egorov (Russia, 1911-2001)
(Egorov, 1961) showed for a rigid beam unevenness of
distribution of passive pressure of the uniform bed even
n case of extremely uneven external loads (concentrated
force) 1s sigmficantly eliminated at reduction of thickness
of a bed layer. For sizes m = H/a (H; thickness of a bed
layer, a; beam semi-length), being in limits 0.1-0.15 (for a
standard brick on mortar bed joint of 10-20 mm), the
volumes of the passive pressure of the umform mortar
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bed could be considered as a finite and rather evenly
distributed on all length of the umt bed face (Fig. 5).

Numerical simulation allows to draw a
conclusion that deformations of general purpose mortar
does not change significantly if as a distribution of
Eq. 24 offer the simplified piecewise constant function
presented in Fig. 3b and to replace a unit plate with a
short beam of E I ngidity with generalization of
deformations of a plate by the equation of the elastic
curve of a beam.

In these conditions it is possible to identify the bed
yielding w, required for Eq. 22 with deflections of the
beam y and to receive the equation of the elastic curve of
a beam by integration of the following differential
equation (Sobolev and Gagin, 1989):

d*y(2)
de*

(25)

+4k4y(§):a

where, £ = x/L; 4k* = cL.YE]J, 4= qLYE,I; L =1+, (Fig. 3b
and ¢) by Eq. 23. The general solution to the differential
Eq. 25 is as follows:

y{&)=Ceh(ke )+ C, (eh(ke }sin(KE) + sh(k&)cos(kE)) +
Cysh(ke)sin(kg) + C, (ch(ke )sin (k&) + sh(k )cos (K2 ) )
(26)
As uneven Young's modulus B 15 set by sumplified
piecewise constant function (Fig. 3b) that having the
beam splitted mto five zones (-L<x<-1;; -1, ex<-1,; -1, <x<l;
L<x<l; 1,<x<L) of constant Young’s modulus E ony
bottom and top sides of a bed face, we will receive the
decision of (Eq. 26) as follows. For the elastic curve of a
beam y:

[c ch(kg)+ C,, (ch(kg)sin(kg)+
sh(k;;)oos(ka)) C.osh(kg)sin(kg )+
C.s(ch(k g )sin(kg) + sh(kg Jeos (ke))

(27)

For small slopes of the elastic curve [f1] (tg [fi] equal
to [fi]), the bending moments M and shear forces Q
in a beam:

() e oY)
e
ag)=-£a 2

L3

The Eq. 27 contains 24 constants of integration
defined from following boundary conditions: Condition of
continuity of deformations and stresses on borders of
ZOnes:



Res. J. Applied Sci., 9 (11): 893-900, 2014

Y(-&-0=y (=& +0ry(E -0 =y, +0)

¥ (0-0) =y ©+0);

Pl—x-0)=¢(—x, + 03X -0)=¢x +0)
P(-%,-0=0{-x, + 0} 0x,-0) =@ x, +0)
P(0—0)=p(0+0),

M(_EH_O)ZM(_& +O);M(E’1_O):M(E.:1 +0);
M (=&, —0) =M (=& + 0% M (&, -0) =M, +0);
M (0 0)=M (0 +0);

QI-§-0=-Q(-& 01 QE-0=Q(& +0y
Q(fE.»z*O):Q(fgz +0);Q(E.»2 70)=Q(E.»2 +0);
QO-0)=Q(0+0)

(29)
where, £ = 1/L; condition of absence of internal stresses
at beam edges:

M(-D=M(D=0;Q{-1)=Q(D)=0  (30)

Thus, the volume of passive pressure g, (x) of
masonry bed of h, thickness, with characteristics E,, and
v,, after action of load ¢, by a rigid unit beam with
characteristics hy, B, and v, can be found by Eq. 22-24. As
the minimum and the maximum of q,(x) are equal to the
same values of passive pressure g,(x), the task becomes
recurrent and is decided by the method of consecutive
approximations with acceptable convergence after 3-4
iterations.

The strength criterion which 1s reliable and
reasonably describes a limit states of the majority of
masonry materials is the generalized strength criterion by
prof. G.5. Pisarenko (Russia, 1910-2001) (Pisarenko and
Lebedev, 1976) which i1s the piecewise continuous
function contaimng the principal stresses of a plane
stress problem (0, and ¢,) and two constants of a material
defined experimentally (strength on compression o,, and
on tension G,):

G, — %G, <G,
x2(61763)+6p(17'x2)61263 (31)

12(01—63)4-(1—)(2)612 Scsi

where, ¥ = 0/0..
RESULTS AND DISCUSSION

Considering the above, we will formulate the general
algorithm to determine the parameters of the stress-strain
state of an average masonry umt: set the strength and
deformative characteristics of masonry materials:
compression (R, and bending tension (R,) strength,
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Young’s modulus, Poisson’s ratio by standard tests. Set
the unevenness of deformability of the mortar bed
joints in the form of the piecewise constant function E,(x)
(Fig. 3).

Make the solution of nonlinear plane problem for
unit plate consistently defining the stress-strain state
parameters on each of loading stages, setting the
corresponding amplitude values of g™ and t™ for each of
withheld harmonics of a trigonometric Fourier series
(Eq. 5).

Check for himit state conditions n umit plate by
Pisarenko criterion (Eq. 31). Given of the manufacturing
characteristics of the urut, the moment of achievement by
the equivalent stresses 0,4 of the volumes R could be
considered as the moment of beginning of the cracking
and achievement of the volumes, r™
finishing of the cracking, splitting of a masomry on
separate substructures by main cracks.

While masonry remains undestroyed (main cracks at
stage No. 4 split the masomry on separate columns of
cross-sections with width and height of semi-unit), repeat
the calculation for stages No. 3, 4 for the next iterative
step with accordingly changing of volumes of external
loads, passive pressure and the deformability of masonry
materials. Formation of the main cracks corresponding to
the splitting of a masonry on separate columns changes
the design model of plane task by shorteming of plate
length with | on 0.51 (Fig. 1) with acceptance of tniform
deformability of the truncated mortar bed joint. For the
changed design model repeat the calculation for stages
No. 3, 4. The moment for half-length plates of achievement
by the equivalent stresses 0, of the volumes R™ 1s
considered as the moment of final fracture of the masomnry.

the moment of

CONCLUSION

The presented algorithm could be realized as a
software application, in spreadsheet applications (MS
Excel, etc.) in computer algebra systems (Maple, etc.).
Programming allows to automate the stated calculation
procedures with the organization of the phased solution
of the plane stress task for any range of arguments by
means of two iterative cycles the external, checking of
convergence of the solution and internal, setting the
current recurrent values of passive pressure of mortar bed
and external loads on each iterative step. Computer
calculation of the presented algorithms allows the carry
out the both general and differentiated quantitative
analysis of influence of various technological factors on

the stress-strain state of masonry of an  arbitrary
materials, geometry, technology and quality of
production.
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