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Own Oscillations of Transversally Isotropic Layer
Between a Hard Surface and an Elastic Half-Space
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Abstract: We consider a semi-open elastic waveguide structure formed by a transversely isotropic layer which
on the one hand 1s firmly fixed and on the other hand 1s linked with an 1sotropic half-space. A general solution
of differential equation system 1s obtained describing the propagation of elastic waves in a transversely
isotropic medium. Using the boundary conditions and conjugation conditions at the junction of a strip and a
half-space as well as the explicit representations of the fields in each of the media, a characteristic equation for
the eigenvalues (longitudinal permanents) 15 obtained concerning our waveguide structure. We considered
separately the mtervals of eigenvalues. The range m which the values of the longitudinal permanents form a
discrete spectrum is specified. The dependence of the longitudinal permanents real values from oscillation
frequencies is studied. Tt is noted that the waveguide modes may exist only if the substrate (half-space) is
acoustically more rigid material than the layer. It 1s concluded that the eigenvalues are bounded above and
below by the values corresponding to wave mumbers of the attached media. Also, the range 1s specified in
which the modes are originated. Tt is noted that the characteristic curves are not intersected anywhere. The
claculation results are presented for a transversely isotropic layer, filled with sandstone and coupled with rather
solid material close to the foundation.
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INTRODUCTION

The layered media have waveguide properties in such
structures waves may propagate without sources. The
elastic waves in layered media are described for example
n the monograph (Brekhovskikh, 1973, Ewing et al., 1957)
which focus on the problem of reflection and the
refraction of elastic waves and the physical interpretation
of the results. In Vdovina et al. (2008), the own waves of
the isotropic half-open waveguide related to discrete and
continuous spectrum are obtained. Tt is shown that the
values of the longitudinal propagation constant (of the
spectral parameter) form a complex plane set consisting of
a vertical semiaxis, the horizontal segment and individual
points. Tt is proved that the own waves of the half-open
waveguide are orthogonal ones and form a complete
system of modes on the basis of which any wave may be
expanded propagatng m an infinite half-open
waveguide.

However for the most part, the media are anisotropic
ones. The sumplest case of amisotropy 1s the transversely
1sotropic media. These layers may be found both m nature
and in machinery (Anufrieva and Tumakov, 2013). In this
study, we studied the properties of natural waves for a

waveguide structure which 1s formed by a full contact
transverse 1sotropic elastic band and an 1sotropic elastic
half-plane.

The spectrum analysis of waveguide structures are
necessary most of all in comugation problems when the
field in each mating portion is represented as a
superposition of the own waves for this structure. For
example in diffraction problems at the junction of two
waveguides it 1s convernient to search the fields in each of
the waveguides as a series of modes (Stekhina and
Tumalkov, 2013). The issues of spectrum finding in
geophysics are also of particular interest (Kipot et al.,
2011). Also, the knowing of the discrete spectrum is
necessary to explain the qualitative picture of the
amplitude-frequency characteristics, resulting in the
problems of diffraction waves on transversely isotropic
layers (Anufrieva and Tumakov, 2014). In the present
study, we demonstrated the presence of a wavegude
continuous spectrum formed by a transversely isotropic
layer and an isotropic elastic half-plane and the
intervals of discrete elements possible existence are
highlighted.

The presence of the discrete spectrum for a specific
waveguide structure depends not only on the geometry
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of a waveguide but also on the values of the media elastic
parameters, forming it. For example, the works
(Pleshchinskaya et al., 2011, 2013) performed the analysis
of some isotropic waveguide structures and developed
the dispersion curves for a discrete spectrum. The
dispersion equations for the calculation of eigenvalues
concermng transverse 1sotropic waveguides 1s much more
complicated than for the isotropic case and the studies of
such structures are unknown for the researchers.

MATERIALS AND METHODS

Problem set: Let’s consider the free elastic vibrations of
wavegude structure (Fig. 1) which 15 a transverse
isotropic layer (0<y<I.) with constant density p, and an
elastic modulus tensor:

k, k, 0
K=k, k, 0
0 0 k

We believe that the layer adheres firmly to the
semi-infinite isotropic half-plane v>1. with a constant
density p, and Lame coefficients A, p,. Let’s look for the
solution of a flat harmomnic problem within elasticity theory
at y=L:
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Describing the propagation of elastic waves in an
1sotropic medium. The process of wave propagation in a
homogeneous transverse isotropic medium (O<y<T.) is
described by the equations:
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Fig. 1: The issue geometry
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The conditions of conjugation should be performed
at the medium boundary:

u,(xL+0)=u,xL-0), u,(x,L+0)=u_(x,L-0)
T (x.L+0)=1,(x,L-0), o,(xL+0)=0c,(xL-0)
(5
at v = L. We will study, the case when a waveguide is

mowunted on a rigid base that comresponds to the
conditions at y = 0:

U, (x0)=0, u,{x,0)=0 ()]

Let’s consider such solutions of the system Eq. 1 and
2 which are limited at y--+e. All the required functions of
the Eq. 1-4 are believed to be continuously differentiable
inthe areas O<y<L., y>L and continuously extended to the
boundaries of these areas.

Further let’s assume that the dependence of the
unknown functions of the coordinate x is the following
one exp{ifx} where the complex number £ represents the
spectral parameter. Thus, the transition to the functions
U, U, 0., 0, and T, is performed which are the solutions
of the following ordinary differential equations:
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for O<y<I.. In the system, Eq. 7 and 8 all the required
functions are considered as the functions of the variable
y and parameter £ For brevity, we will omit the
dependence by y for example, instead of w(Z, v), we will

put down u(£).

Let’s study the problem on the own complex values
E, t which the system Eq. 7 and 8 with the terms of
conjugation Eq. 5 and the boundary conditions Eq. 6 has
non-trivial solutions (for the functions under the
conditions Eq. 5 and 6, we also accept the above
relationship by x in the form of exp {i€x}). These values of
E define their own waves of a semi-open waveguide with

transverse 1sotropic layer.

Elastic vibrations of transverse isotropic medium: Letus
find the solution of the system Eq. 8. To do this, Eq. 8
let’s exclude 0, and bring the present system to the
following form v' = Mv where v = (11, 1,,, 0, T):
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M —1&k, /&y, 0 17k, 0
- 0 —peo’ 0 —ig
79(’32 + E.»Zkll - E.»zkfz ky 0 -k, 1k, 0
Let:
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The matrix M has the eigenvalues +il'+ and +iI", the
following eigenvectors correspond to them: A, (4F,, G,,

+H,, A and A (+F, G, +H, A

. ’ k
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33
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Thus, the general solution of the system

describing the propagation of elastic waves m a
transverse isotropic medium may be written as
follows:
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where, A, B,, C, and D, are arbitrary constants.

Own oscillations of transverse isotropic layer attached to
elastic half-plane: The displacements and stresses as a
general solution of the system Eq. 7 may be represented
as follows (Vdovina et al., 2008):
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The branches of the functions vy, are selected, so that

the real and imaginary parts are non-negative ones. It
should be noted that for a transverse isotropic medium
the wave numbers in the plane of the elastic symmetry k;,
as well ask,, may be expressed via A, and p, (Annin,
2009). The wave carrying energy n any given direction
will be called the wave moving in this direction.

The research (Anufrieva et al., 2014) proves that the
eigenwaves of a semi-open elastic waveguide moving to
the right exist at the values of the parameter £, belonging
to the positive imaginary semi-axis, the mterval (-k,, 0)
and develop a continuous spectrum on these sets.

Let’s consider the possible types of spectra. The
dispersion equation may be obtained if the Eq. 9 and 10
satisfy the conditions of conjugation (Eq. 5) and the
boundary condition (Eq. 6). The essential point here 1s the
mumber of unknowns (amplitudes) at the six equations.
The solutions (Eq. 10) must satisfy the term of a field
limitation at infinity, so the behavior of vy, is important for
the presentation of the solution at determined .
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Let’s consider only those waves which transfer
energy to the right, i.e., along the axis and (or) are damped
in the same direction. At that the parameter £ should be
within the second quadrant of the complex plane with its
borders (Re £<0, Tm £>0). Note also that according to the
positivity of the Lame coefficients: I, < ,.

Let £e(-k,, 0), then all y,; (€) will be real ones. In the
Eq. 9 and 10 all {eight) of unknown factors will remain.
Then in the system of six equations (Eq. 5 and 6) the will
be two more unknown elements and hence, it is possible
to find two linearly independent eigen waves of elastic
waveguide related to the continuous spectrum.

AtEe(Xk,,, k,,), the value v ,(E) remains a real one and
the value v,(€) becomes purely imaginary with positive
imaginary part. In this case, we assume that A, = 0
within the Eq. 10. Then seven unknown elements of the
form (Eq. 5 and 6) remain in the system, one of which is an
arbitrary constant in the solution. The interval (-k,, ;)
also relates to the continuous part of the studied
spectrum but here only one mode corresponds to each
value £,

At E<-k,, the amplitudes A, and C, are = 0. Therefore
in the system of six equations only six coefficients remain
unknown ones. The nonzero solution exists when the
matrix determinant of its coefficients is = 0. In Anufrieva
et al. (2014), it was indicated that the discrete spectrum is
possible only when E<-k,,. Tts presence is determined by
the elastic parameters andthe thickness of transverse
isotropic layer. Let’s note that if the layer is an isotropic
one, then as shown in (Vdovina et al., 2008) the
discrete spectrum is in the range between the wave
numbers of two media transverse waves.

RESULTS AND DISCUSSION

Let's obtain the characteristic equation for the
eigenvalues studied in the research of the waveguide
structure and let’s put it down in the following way:
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Let’s study, the dependence of the real longitudinal
constants £ from the frequency w. For different
substances, the ratio of the elastic parameters of a layer
and a substrate changes. The waveguide modes may exist
only if a substrate is acoustically more rigid material than
a layer. If this condition is not satisfied then, the modes
are transferred to a substrate as radiative ones forming a
continuous range.

Figure 2 demonstrates the dependence curves £
on the frequency w for the case p, = 2400 kg m—,
k, = 1.0910" Pa, k,, = 0.3910" Pa, k,, = 1.7910" Pa,
ky; = 0.5210" Pa which corresponds to sandstone
(taken from (Amnin, 2008)). The half-plane is considered
to be a sufficiently hard material close to the

3

foundation with the parameters p, = 2600 kg m™,
v, = 6000 m sec !, v, = 4300 m sec”". Let’s note that
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Fig. 3: Dependence of £ on w. The isolated fragment
we (1800, 2200) on £ (1.7k,,. k;). Parameters
0, =2400kg m~ k;, =1.0910" Pa, k,; = 0.3910'"Pa,
ky,;,=1.7910"Pa, k,; = 0.5210"° Pa, p, = 2600 kg m ",
v, = 6000 m sec”', v, = 4300 m sec™
Lame coefficients A, and p, in the Eq 10 are
expressed in terms of elastic wave speed W, = pyv..’,
A= piv-2p
Figure 2 demonstrates by the straight lines upward
IE] = ky, |E] =k, and |E| = k,;. The roots are cut by
straight |£] =k, to the bottom and the top values fit close
to the line |E| = k;,, condensing near it with the growth of
w. Let’s note that the points of mode origin are between
the values of k;, and k;,. The dispersion curves are not
intersected. This is well illustrated by the example at
we (1800, 2200) on Fig. 3.
Summary: The representation for elastic waves
propagating in transverse isotropic medium 1s obtamed.
The dispersion equation is derived for the modes of a
waveguide structure formed by a transverse isotropic
layer which on the one hand 1s rigidly fixed and on the
other hand 1s related to the half-space.

CONCLUSION

Tt was found that the waveguide modes may exist
only if a half-space is acoustically more rigid medium than
a layer. The result of numerical experiments show that
longitudinal permanents £ which are the solutions of a
characteristic equation are limited by the values k,, below
and by k,; above. And the emergence of modes (the
mimmum value of £ for each characteristic curve)
belongs to the interval k ;<&<k,,. Tt is concluded that the
characteristic curves are never intersected.
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