Research Journal of Applied Sciences 10 (8): 358-364, 2015
ISSN: 1815-932X
© Medwell Journals, 2015

Investigation of Distribution of Pseudosimple Numbers

Bulat G. Mubarakov, Andrey S. Mochalov and Ramilva G. Rubtsova
Kazan Federal University, Kremvleskays 18, Kazan, Russia

Abstract: Prime nmumbers play an important role in modern cryptography. The system of RSA is one of the most
well-known cryptographic systems. Tt uses compound mumber as a key that is the product of two prime
numbers of large dimension. To search for large prime numbers different algorithms of primality tests are used.
Note that all existing algorithms of primality testing are divided into two large groups: determimstic and
probabilistic tests. Deterministic simplicity tests can accurately say whether, the number is prime or composite.
The algorithms of the second group are much faster than deterministic but operate with a certain probability
of error. Among the tests of sunplicity used in cryptography, the most popular 1s the probabilistic polynomial
primality test of Miller-Rabin. The theoretical probability of an error of this test depends on the mumber of
iterations wherein each iteration decreases the probability of error in 4 times. However, the actual number of
errors made by this test is much less than the theoretical. For example, checking simplicity of all odd numbers
less than one million with one iteration of Miller-Rabin test with the base of two gives 47 errors with total
number of prime numbers of this range of about 78 thousand. We note that the test of Miller-Rabin makes
mistakes of one type: it defines some composite numbers as simple. These numbers are called strictly pseudo
prime according to the specified reason. The study of the distribution of strictly pseude prime numbers for
various reasons allows to accelerate execution of Miller-Rabin test. This study describes one way to improve
the efficiency of the probabilistic Miller-Rabin test. The theoretical basis for this 1s to search and study the
properties of the distribution of strictly pseudo prime numbers.

Key words: Cryptography, primality test, the test of sunplicity of Miller-Rabin, pseudo prime numbers, rang

INTRODUCTION

One of the most important problems in cryptography
and number theory 1s the problem of determimng by the
set of natural numbers n whether, it 1s prime or compound.
Thus, a well-known cryptographic system with public key
RSA composite number n 15 used as a product of two
prime numbers p and q. The successful solution of the
problem of the factorization (decomposition) of n allows
to hack RSA scheme and to determine a secret key, then,
the choice of p and q, largely determines the strength of
the encryption (Rivest, 1978). For the defimtion of
simplicity, there are many different tests of sumplicity of
which the most common is the Miller-Rabin test of
simplicity (Rabin, 1980; Crandall and Pomerance, 2005;
Ishmukhametov, 2014; Ishmukhametov and Mubarakov,
2013). Miller-Rabin test works quite quickly and
efficiently. However, the main problem with this test a
determination of the number of iterations required to
guarantee determination of checked number simplicity.
Since, there are composite munbers that successfully pass
the test of Miller-Rabin, they are called strictly pseudo
prime (Pomerance et al., 1980a, b; Jaeschke, 1993;
Jiang and Deng, 2012). Thus, analysis of the search

algorithms of strictly pseudo prime numbers and study of
the properties of distribution of strictly pseudo prime
numbers can increase the speed of the Miller-Rabin test
and improve its accuracy.

In this research, we consider another way to increase
the efficiency of the test of Miller-Rabin and analysis of
search results of strictly pseudo prime munbers.

THE ALGORITHM OF RSA

In 1978, three American Scientists, Ronald Rivest, Adi
Shamir and Leonard Adleman of MIT proposed a new
idea of encryption using two different keys: the open
(public) and private (closed) for encoding and decoding
text messages. This method is called RSA Method, the
first letters of the names of the researchers of this method.
In comection with tremendous growth of local and global
computer networks RSA Method was further spread in a
wide variety of products across different platforms and in
many ndustries (Ishmukhametov and Rubtsova, 2007).
Currently, RSA cryptosystem 1s bwlt inte many
commercial products, whose number is constantly
increasing. In addition, it is used by the operating system
Microseft, Apple, Sun and Novell. In hardware, RSA

Corresponding Author: Bulat G. Mubarakov, Kazan Federal University, Kremvleskays 18, Kazan, Russia

Res. J. Applied Sci., 10 (8): 358-364, 2015

algorithm is used in secure phones, Ethernet network
on smart cards, it iz widely used in the
cryptographic equipment. Furthermore, the algorithm 1s
mcluded in all basic protocols for secure Internet
communications, including S/MIME, SSL and S/WAN.
With the help of this method encrypted passwords for
database access, credit card numbers to pay for services

cards

and many more are sent. In addition, this method 15 based
on the idea of the digital signature which is supported by
the appropriate legislative decrees in many countries,
mcluding Russia. About 500 million users around the
world use RSA BSAFE encryption technology. Since in
most cases RSA algorithm is used, it can be considered
the most common cryptosystem in the world and this
amount has a marked tendency to mcrease with growing
internet.

In this algorithm, prime numbers play a fundamental
role. Since, you need to generate a pair of public and
secret keys, it 18 necessary to find two large prime
numbers p and q and calculate the product n = pq. Then
take the required random number e, relatively prime to
@n) = (p-1) (g-1) and find a number d of condition
ed = 1 (mod @(n)). The pair (1, e) 1s declared a public key.
The remaining numbers (p, q, ¢(n), d) form a secret key.
To decrypt it is enough to know the couple (n, d). Since,
the successful solution of the problem of nmumber n
factorization (decomposition) (usually 1024 or 2048 bits)
allows you to completely decode the RSA scheme and
determine secret key, selection of prime numbers p and q,
largely determines the strength of the encryption.

Classification of number testing algorithms for
primality: The procedure for determining for the given
natural numbers n, whether, it 1s simple or compound 1s
called a test of simplicity. To determine the ease of p and
q 1t 13 known many different primality test
(Tshmukhametov, 2014). All the existing algorithms for
testing primality can be divided into two categories:

The so-called determimstic tests for ease which
belong to the class of algorithms that determine in
polynomial time whether a given number is prime or not.

Probabilistic tests that are included in the class of
algorithms that determine in polynomial time whether a
given number 1s prime with a certain probability. Thus, at
the expense of algorithm execution time one can achieve
high probability as much as you please.

Deterministic tests of number simplicity: There are many
techniques that allow us to determine with a probability
that equals one that is reliably authentic whether the
given positive integer number n 1s simple. Unfortunately,
some of them research well only for small values of n;

359

some require a complete factorization of n-1 number and
some only allow you to check numbers of a special type.

Probabilistic tests: Today, the most commonly used 1s
probabilistic test for simplicity. It is proved, primarily by
a much smaller amount spent on test as compared with
deterministic tests. It is important to know that this
approach 1s most commonly used in practice.

Requirements for high cryptographic system firmness
call to practice probabilistic tests with a high degree of
certamnty. More recently, it was very difficult because of
the mmperfection of the technical characteristics of
computing systems. However, performance growth of
computing systems, along with an increase in the
efficiency of the developed algorithms make decryption
task realized.

The majority of modern probabilistic methods of
primality testing is based on different variations of
Fermat's small theorem. According to Fermat's small
theorem 1if the integer n the simple, then for any integer a,
not divisible by n, there is comparison a*' = 1{mod n).
From the same theorem implies that if this equation
1s not solvable at least for one number a in range of
{1, 2, .., n-1}, then n composite number. The mverse
proposition is not true.

The task of increasing the reliability of probabilistic

has become urgent for cryptography, after
“Carmichael numbers” being found and it became clear
that the test that is based on Fermat’s small theorem
“gives failures”. The algorithm proposed by Lehmann
became the first algorithm that lacks the disadvantages of
Fermat’s test. This test could determine the numbers of
Carmichael and it cast them as components than they
actually are. However, probabilistic Miller-Rabin test
gives higher accuracy.

tests

TEST OF MILLER-RABIN

Let’s start with a description of the algorithm. Given

a positive odd number n>3. Imagine the number of n-1 in
the form of:

(1

n-1 = 2°xu, u-odd

Miller-Rabin algorithm consists of several iterations
called rounds. Each round either determines the number
n as a compound or enhances the probability of that n is
prime. We describe the implementation of the instruction
of the round:
¢ Selectarandom integer a in the range from 2 to n-1
We calculate b= a" modn
We check the condition

Res. J. Applied Sci., 10 (8): 358-364, 2015

(2

b=+1modn

If Eq. 2 18 executed, then the number n is probably
simple go to the next round

Otherwise, we calculate the sequence:

(3)

b,.b

15D b assuming by =b, b, =b? modn

If none of the members of the sequence is equivalent
to -1 on modul n, then we claim that n composite.
Otherwise, it confirms n probably simple. Miller-Rabin test
worlks quickly and efficiently but as previously
mentioned, there are components that successfully pass

the test of Miller-Rabina.

Definition 1: Let a>1 arbitrary integer. Let us call odd
composite integer n strictly pseudoprime on the basis of
a or spsp(a) if the number n passes another round of
Miller-Rabin test with the base a. In other words, one of
the following conditions is met:

a" =+ 1modn

uz

a

—lmodnforsome 1,0<1<s

Where, n-1 =2%u

Definition 2: Let a> 1 arbitrary integer. Let us call odd
composite nteger n a-pseudoprime or psp(a) if the
following formula 1s executed:

a® modn=1

The element a is called a base for pseudoprime
number n. By Rabin theorem probability that a composite
number successfully passes one round of this test does
not exceed Y4, therefore, successful performance of k
iterations reduces the probability of error to 4* Note that
if n a composite, one of the iterations will determine this
accurately. If you use unproven Riemann hypothesis
about the distribution of prime numbers, you can limit the
number of iterations with value (log, n)” that however is
obviously overestimated.

Thus, an effective search of strictly pseudo prime
numbers and study of their properties can mncrease the
speed of the Miller-Rabin test and improve its accuracy.

In particular in (Pomerance et al., 1980a, b), it 18
proposed a “fast” primality test for numbers n<25x10°, the
1dea of which 1s as follows.

We will find a list of all the numbers p<25x10° such
that pespsp({2, 3, 5}). Suppose that an mteger n 1s taken
to mput. We define an algorithm using the following
steps:

360

Run the test of Miller-Rabin in three iterations with
witnesses of sumplicity a = 2, 3 and 5 correspondingly. If
n does not pass at least one of the tests, consider it an
integral and complete work.

We check to see if the number is in our list (neP). If
the number was found, it is evidently composite.
Otherwise, we believe n simple.

It 1s easy to prove that the proposed algorithm 1s
deterministic and will give correct result for any number
from the nterval mm question. Its applicability 1s
particularly the case in the computing systems having a
sufficient amount of free memory (it is necessary to
constantly keep a list P) but they may have a deficit of
COIMpUting power.

PSEUDOPRIME NUMBERS
SEARCH ALGORITHM

Tn order to find all pseudo prime numbers that are less
than some fixed boundary, it would be wise to search for
the numbers that are pseudo prime immediately on the
basis of several mumbers, especially if thus will help
increase the efficiency of the algorithm.

We fix some set v = (a,,...,a), B border and set
objective in order to find all such numbers n<B that
nespsp(v). To begmm with we will consider only the
numbers of the form n = pg, where p, q primes. The
resulting approach can be extended in the future on any
number of factors t but the task itself is less relevant
because overwhelming majority of strictly pseudoprime
numbers on several bases consist of two factors. Among
the given in (Crandall and Pomerance, 2005) list of
spspi2.3,5¢ numbers <10 only six of the 101 (5.9%) have
t =3. Numbers consisting of 4 or more factors m this list
are not presernt.

It should also be understood that at £=2, it becomes
much easier to make a complete listing of multipliers as the
number of options under consideration is limited to p, <4/B
forallj, 1<<t.

By condition that n = pq 18 pseudoprime on the
basis b only if p|b*'-1 and g|b*'-1. If we are looking for
nespsp(w), w = (by,...by), wov, we must have g vt -1,
1 <1< where:

q|HOII(b! ™" ~1,...,bf ™ 1) (5)

Equation 5 gives us the opportunity, fixing another
facter p<v/B to find the corresponding value of q among
the divisors of calculated GCD. Numbers v -1 will have
big values but their GCD will be considerably less which
facilitates factorization. Obviously, this approach would
be most effective at small values of p in contrast for
example, techmques proposed by Crandall and Pomerance
(2005). Below we describe the algorithm:

Res. J. Applied Sci., 10 (8): 358-364, 2015

Choose another simple p<¥B and compute:
h=HOOb"™ —1,..,bF™" —1)

We factor h/p =h/h,.. h
For each h>p, we check whether hp 15 strictly
pseudoprime for v and o to step 1

Obviously, the effective implementation of the
algorithm depends on the following tasks:

The 1 integers are given, you need to calculate their
GCcp
For the h/p to find all the factors

We can assume that among the divisors h/p there will
be a sufficient number of small primes in addition as will
be shown below the value of h/p is small even when
p=10". Accordingly, the use of such sub expenential
factorization algorithms as a method of quadratic sieve or
the number field Sieve Method will be unjustified. These
algorithms require a significant amount of time at the
stage of initialization (for example, the choice of a
polynomial pair in the number field sieve method) and are
most effective when factoring mumbers =10,

In this case, choice of such factorization methods as
p-algoritm of Pollard and the method of elliptic curves
look more reasonable. The computational complexity of
the latter 15 estimated as:

exp((ﬁ-&- 0(1)) plnp]n(lnp))

where, p the smallest divisor of h/p. In practice, we will
first choose possible divisors <10°. This will discard all
small prime factors h/p without spending a lot of time on
this process.

The calculation for each type numbers algorithm
iteration L(p) = b*-1 alsc seems expensive task, moreover
with the size of w increasing the number of such
computations will be directly proportional to the
Inerease.

In this case, recurrent approach will be more efficient
for calculation L{p). Suppose, we have calculated the
value of L(p,) where b, aregular prime number. We need
to quickly calculate L(p,)-L(p,+8) where &=p,-p,
some number. We have:

L(p11 +5):bpu+5—1 C1=bf bt 1:(bp“_l —l)x
- L)+ 0

1

361

We find that:
L{p, +8)=b’L(p,)+(b*-1)

Obviously, the use of the recursion formula
computationally simplifies our task as we get rnid of the
need to perform exponentiation. As far as, the practical
application 1s concerned, the use of the approach has
reduced the runming time by an average of 8%.

Calculating the GCD numbers of the form bf’-1 is a
very demanding task as arguments can take large values.
For example if b = 2, p=1(’, this value can be estimated as
~ 29 2107 . Simple methods for finding the GCD as
Euclid’s algorithm in this case will be useless. A
comparative analysis of the implementation of various
methods for finding the GCD applied to our conditions
showed that the most effective 1s to use Lehmer’s GCD
algorithm.

Implementation details: As the main development
language, we will use C++ as a development environment,
we will use Linux Operating System and NetBeans
IDE.

Since, developed algorithms have originally been
designed to work with large numbers that are not able to
fit in the memory area, equal to the standard machine word
(32 or 64 bit), there is a need to use the library long
arithmetic. As such we will use the GMP an open-source
software designed for floating pomt, integer and rational
numbers with arbitrary precision calculations.

Note that the proposed search algorithm spsp(v)
there dependencies
computations produced for two different factors p, except

numbers are no between
for the recurrence formula linking consecutive numbers
L(p;). Failure to use this correlation will allow you to
search spsp(v) numbers of disjoint P
independently of one another.

Sequential calculations in this case are absent and
this means organized similarly parallelization will provide
nearly ideal acceleration time. According to Amdahl’s
Law, the acceleration that can be obtamned on a
computing system of k processors as compared with

a single-processor solution will not exceed the value:

mtervals

where, ¢ the proportion of the total volume of calculations
which can be obtained only by successive calculations in
our case =0.

Res. J. Applied Sci., 10 (8): 358-364, 2015

Let us aim to create an implementation of the
algorithm adapted for use in a multiprocessor system with
shared memory having k processors. Ideally such an
unplementation should provide acceleration S, = k
compared with a conventional implementation.

Calculation flows should be organized in such a way
that for every prime p all the relevant calculations were
performed only once. Synchronization between the flows
thus calculated must occur on the current p. To solve the
problem, we can guarantee that at any given time only one
thread has night to read/write access to variable that
stores the mnext value p. In pseudocode
synchronization will look this way:

such

We grab variable p

We copy the value from p to the local variable p of
the stream and we assign value of the next prime
number p—m, m>p, m simple to the variable p

We free the variable p

We perform calculations and derive spsp(v) numbers
where one of the factors is p. Proceed to 1

The disadvantage of this approach 1s the loss of CPU
time spent on synchromzation: with a large number of
streams, some of them will be idle, waiting for blocking p
to be lifted.

It 1s much more efficient m this case to allocate small
mtervals of length 1 [(y-1) 1; y1], yeN for flows. Within its
range, each thread will perform calculations without the
need for synchronization. Moreover, there is a possibility
of using the recurrence relation. Transform appropriate
description of the algorithm:

Grab the variable v

Copy the value from y to the local variable v of the
stream and execute y-y + 1

Free the variable y

For each pe[(y-1)1;, yl], we perform calculations
according to Eq. 5, search and derive spsp(v)
numbers where one of the factors 1s p. Proceed to 1

The correct choice of 1 interval length is determined
primarily by the search boundary B and the number of the
processors k. The maximum efficiency of the algorithm can
be reached at | = B/k.

For parallelization we will use OpenMP an open
standard that describes a set of compiler directives, library
routines and environment variables mtended for
programming of multithreaded applications on
multiprocessor systems with shared memory.

Having carried out the parallelization, we will run
computation on a computer that has a dual-core

362

processor. On the test range the algorithm worked for 261
sec while the sequential version of the algorithm on the
same computer works off for 510 sec. That is n this case,
the practical value S;=1.954=k = 2 which confirms the
effectiveness of the implementation.

SUMMARY

The complete cycle of the algorithm took 2 days 23 h
34 min and the result of his work was the list of P from
1118 numbers that are strictly pseudoprime with respect
to the first three prime mumbers (2, 3, 5). All numbers of
this range consist of two factors where one of them is
limited on the value with number 107. The smallest
resulting number 25326001=2.5x107, the biggest
3931205905188049~3.9x10". Figure 1 illustrates the
distribution of the numbers obtained.

Tn the range of 10", we find complete agreement with
95 pseudoprime numbers given (Crandall and Pomerance,
2005) in his research. Despite the fact that this is only
8.5% of the entire set of numbers of the range P, complete
coincidence confirms the hypothesis of a small spread
between the values of p and q and this excludes the
possibility to “miss” strictly pseudoprime number fixing
a specific limit for one of the factors. More detailed
analysis of the spread between the factors will be made
below.

We also note that this list does not contain strictly
pseudoprime number defined by Crandall and Pomerance
(2005) as:

W, =y, =341550071728321=

=10670053x 32010157

Our list 18 formed for strictly pseudoprime numbers 1n
relation to the first three prime mumbers (2, 3, 5) and
therefore, the abovementioned number must meet the
criteria. Note, however that the least of the factors of the
number 10670053>107 and thus, it was outside the
search.

500
450+
400
350
300+
250
200 +
150
100
50
0.0

Illustrates values

Fig. 1: The illustrates the distribution of the number

Res. J. Applied Sci., 10 (8): 358-364, 2015

We increase the upper limit for the factor by 1% and
carry out the same search again in the range of 107<p<l,
110", The calculation took another 23 h and the algorithm
has 1ssued a list of 87 numbers. Numbers .=y, also
present in the list that confirms the correctness of the
research.

Pomerance et al. (1980a, b) in his research, he notes
that most of the mvestigated pseudosimple numbers can
be represented in the form n = (I+1)(kl+1) where 141 is
prime, a 1s some small positive integer. The statement also
applies to numbers consisting of three simple factors. For
example, spsp{2,3,5} number:

3215031751 = 151 =751 %28351 = (k+1)(4k+1)

where, 4k+1 = (m+1)(5m+1), k =28350, m =150. Based on
this feature, the researcher proposes to solve the problem
of factorization of knowingly pseudoprime number mutially
with attempts to factor form (1+m)(k1+1) and only in the
event of failure to move to more severe methods. The
researcher also claims that due to the requirement of a
strong pseudoprimeness amownt of numbers that do not
meet requirements of the given form will be rapidly
reduced.

The researcher of Taeschke (1993), on the contrary is
trying to contest this hypothesis, citing as a counter
example two pseudoprime numbers from the range <10"
that do not meet requirements of the (1+1)(kl+1) form:

177475820141 = 176041 x440101
183413388211 = 370891 x494521

The study of numbers from the resulting list for
compliance with the given form showed that 23 of 1118
strictly psevdoprime numbers do not correspond to it
(2.05%).

For greater understanding of distribution of the
numbers we will display them m a graph in which the
vertical axis will show the number of strictly pseudoprime
numbers that do not meet requirements of the above
mentioned shape and smaller of this value x.

From Fig. 2, we see that with an increase of values the
number of such numbers becomes much less. The last
statement 1s an additional argument for the use of the
proposed in Pomerance et al. (1980) approach to factoring
pseudoprime numbers.

Analysis of the values of k in the formula deserves
special attention. The researcher claims that these values
are small. The biggest value obtained in this case, k = 61.
However, ~80% of the values are concentrated in the
range 2<k<5. Tn general, the distribution of values of k for
the selected numbers can be represented as a histogram
(Fig. 3).

363

Values

T 1
2E+14 3E+14

Parameters

T
1E+14

Fig. 2: The increase of values the mumber

400
350
300 -
250
200 A
150
100 1
50
04

Values

2 3 4 5 6 7 8 9 10 11 1213 14 <15

Parameters

Fig. 3: The values of k for selected number be represented
as histogram

CONCLUSION

The results obtained m this study may be useful both
during construction of efficient simplicity tests and
evaluation of errors in Miller-Rabin test and within the
further study of properties of pseudoprime and strongly
pseudoprime numbers.

In particular, the above mentioned list of strictly
pseudoprime numbers on bases (2, 3, 5) has been used by
the researchers for implementation of “quick” test of
simplicity, proposed in research (Pomerance et al.,
1980a, by). Depending on the selected base and the size of
input number one was able to gain on the average 6%
acceleration as compared to the conventional
implementation of Miller-Rabin test which confirms the
relevance and practical value of the worlk.

In addition, the identified properties of pseudoprime
numbers open up additional opportunities for building a
more efficient algorithms of their search.

ACKNOWLEDGEMENT

The research is performed according to the Russian
Government Program of Competitive Growth of Kazan
Federal University.

Res. J. Applied Sci., 10 (8): 358-364, 2015

REFERENCES

Crandall, R. and C. Pomerance, 2005. The prime numbers:
a computational perspective. 2nd Edn., Springer-
Verlag, Berlin, pp: 604.

Ishmukhametov, S.T. and R.G. Rubtsova, 2007. On the
complexity of integers factoring. Bulletin TSHPU,
pp: 9-10.

Ishmukhametov, S. and B. Mubarakov, 2013. On
practical aspects of the Miller-Rabin Primarily Test.
Lobachevskil J. Math., 3: 13.

Ishmukhametov, S.T., 2014, Methods of integers
factoring. S.T. TIshmuhametov (Eds.), LAP
Lambert Academic Pub., ISBN: 978-3-659-17639-5,
pp: 27-29, 256.

364

Hang, J. and Y. Deng, 2012. Strong pseudoprimes to the
first 9 prime bases. ArXiv: 1207. 0063 v1 [math.NT],
2012 http:/farxiv.org/pdf/1207.0063.pdf.

Jaeschke, G., 1993. On Strong Pseudoprimes to Several
Bases. Math. Comput., 61: 915-926.

Pomerance, C, C. Selfridge and S. Wagstaff, 1980a.
The Pseudoprimes to 25x109. Math. Comput.,
pp: 1003-1026,

Pomerance, C., I. Selfrifge and S. Samuel, 1980b.
The Pseudoprimes to 25x1079. Math. Comput,
35:1003-1026.

Rabin, M., 1980. Probabilistic algorthm for testing
primality. J. Numb. Theory, 12 (1): 128-138.

Rivest, R.A, 1978, Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. R. Rivest,
A, Shamir and L. Adleman (Eds.). Commumnications of
the ACM, 21 (2): 120-126.

	358-364_Page_1
	358-364_Page_2
	358-364_Page_3
	358-364_Page_4
	358-364_Page_5
	358-364_Page_6
	358-364_Page_7

