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Abstract: Tt is well known that the process of natural numbers decomposition in a product of primefactors
(factorization) is a time-consuming computational procedure. This property is widely used in cryptography. In
particular, the known RSA encryption method uses a composite number n of 1024 bits or more which is the
product of two prime numbers as the secret key. One of the most effective methods of integer factorization is
H. Lenstry Method based on the arithmetic of elliptic curves. This method has the following feature: its capacity
does not depend on the size of the original number n but on the size of the smallest divisor n. Therefore, the
Lenstra allows to factoring the numbers that are inaccessible for other methods. The peculiarity of Lenstra
Method 1s its heavy dependence on the choice of an elliptic curve. More precisely, the algorithm selects an
arbitrary curve over a prime field of the characteristic p where p 1s the unknown divisor . Let t 1s the number
of points on a selected curve. The rate of algorithm convergence depends on the greatest prime number
dividing the number t. For example if t = p7 «p2 »__xp*, the decomposition of t in the product of prime factors,
then the method complexity depends on B = max; ps . Due to the fact that the method success depends heavily
on t value and its factors which which is the subject of luck. The worst case occurs if tis a prime number. To
eliminate obviously bad cases, yvou must start the factorization procedure simultaneously on several different
curves. Such parallelism allows you to find the curve on which the process will converge faster than the others.
The problem is that the selection of too many curves will affect the overall performance of the method and an
insufficient number of curves does not guarantee a result. In this study, we investigate the convergence of
Lenstra factorization method, depending on the choice of an elliptic curve on which the factorization procedure
1s performed more effectively. We study the statistical distribution of “good” curves on which the factorization
procedure 1s performed more efficiently.

Key words: Factorization of mtegers, H. Lenstra algorithm, elliptic curves, RSA encryption, smooth mtegers,
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INTRODUCTION

An mtegral number factorization is the procedure for
this number expansion in the product of prime factors.
Factorization is a complex computational task requiring
significant computing resources. A known method of
encryption and cryptography (RSA Method) is developed
on the complexity of this task. To date, the length of
composite numbers which can not be decomposed nto a
product of prime factors makes about 1024 bits or 300
decimal places. In 2009, the project of 768 bits number
successful decomposition was completed which lasted
about 10 years. Let’s consider the basic methods of
factorization used in the modern theory of numbers.

MATERIALS AND METHODS

The factorization problem has no polynomial solution
algonthm, although, this theory was not proven. There are

several subexponential factorization algorithms, including
the fastest modern ones (in order of speed decrease) the
Number Field Sieve (NFS), the Quadratic Sieve (QS) and
Lenstra Factorization Method and the Elliptic Curves
Method (ECM) (Ishmukhametov, 2014; Crandall, 2006).
The complexity of the first two methods depends on the
length of the factorisable number (we will denote it
throughout the study by the letter n). ECM rate does not
depend on the length of n but on the length of the
smallest divisor of n. Therefore, although ECM 1s worse
than the first two methods by speed, it is applicable for
the decomposition of large dimension numbers with
relatively small dividers for which the first two methods
are useless. For example, a complete decomposition of the
tenth Fermat number F10 with the length of 300 decimal
digits and some dividers larger than Fermat numbers
(Brent, 1999). The number F10 was decomposed into
a product of 4 length factors: 8 10, 40 and 252 of
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Table 1: The convergence of asymptotic estimate

NFS 08

ECM

exp(C1 (logn)3(log logn)g)

e){p(C2 (log n) (loglog n)u2 )

exp (CB (]ogp log log p))f p the least divider n

discharge. Let’s put down asymptotic estimates of
convergence in Table 1 of these methods (Crandall,
2006).

We see that the theoretical ECM assessment 1s even
better than QS, however for RSA modules, when the
smallest divisor is comparable to +/n , the convergence QS
1s significantly higher than ECM.

It should be noted that the ECM convergence 1s
strongly influenced by the choice of a curve on which the
factorization is performed. Since, it is impossible to
determine which curve will provide a greater convergence,
1t 13 necessary to conduct the statistical research of
“good” and “bad” curves ratio, starting the procedure on
several curves to provide a high probability of successful
factorization.

Exponential methods: In order to estimate ECM
successfully, it is also necessary to describe some of the
slower but more simple methods of factorization.

Trial divisions TR Method: This method consists in the
fact that a test division of the number n into prime
numbers is performed <fn. If you appreciate the
complexity of the division operation to 1, the complexity

of the algorithm is estimated by the number of iterations,
1.e., = +fn . In other words:

C(TR) = 0(n'?)

Pollard Rho Method: This method was developed by
John Pollard in 1975 and is based on a statistical paradox
of “birthdays”. Its asymptotic complexity is estimated as:

C(pP) = O(n")

There are several methods that are similar to
Rho-Pollard Method by difficulty and which have the
same or a similar assessment of convergence. Pollard
Method (p-1), Fermat Method, (p+1) method of Williams,
the method of Shanks quadratic forms (Ishmukhametov,
2014) 1s among them. The effectiveness of these methods
depends on the ratio of divider values or other special
conditions (e.g., on the smoothness of p+l numbers,
where p 15 the divisor n).

ECM Lenstra algorithm: In this study, we will give a
detailed description of Lenstra Method and perform the
assessments of its complexity. Let’s n is a factorisable
number and p 1s its smallest divisor as before.
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The elliptic curve in Weierstrass form over the field
Fp 1s denotes the set of points that satisfy the equation:

v' =x’ + Ax + B(modp) (1)

together with a special point O called an infinitely remote
point with uncertain coordinates.

The procedure of addition is determined on the points
of an elliptic cwwve EC where Q = kP point may be
calculated relatively easily for any P point and an integral
number k (using a polynomial algorithm) but the solution
of finding k factor according to given points P and Q is
much more complicated. The latter problem 1s called the
problem of discrete logarithm calculation on an elliptic
curve and has no fast algorithms to solve it now a days.
The complexity of the discrete logarithm taking pr on EC
1s widely used 1 cryptography and encryption algorithims
and the development of digital signatures
(Ishmukhametov and Rubtsova, 2014).

ECM algorhithm

Initialization stage: Let’s choose the arbitrary positive
integers A and B, the smaller n and consider a curve of
Eq. 1, but choosing the n mumber as a module:

v’ = x’+Ax+B(modn) (2)

The curve (2) is not an elliptic one in the usual sense
as the mainset Fn= {0,1,2, ... n-1} is not a field However,
the standard procedures of points addition and doubling
may be performed on the set Fn. Moreover 1f P(x, y) 1s the
point on the curve (2), P’(x mod p, vy mod p) is the point
on the conventional elliptic curve (Eq. 1). Therefore,
working with a custom curve one may always keep in
mind that the coordinates of all the points of the curve (1)
may be found by the coordinates of the curve (1) if p
module 18 known

Let’s choose any point on the curve Py (Eq. 2) and a
number of B<p where p 1s the alleged divider. The details
about the selection of B will be described. Let’s turn from
affine to projective coordinates of the cuve EC
(Tshmukhametov, 2014; Crandall, 2006):

PU(X: y)%PU(X: Y: 1)

The corresponding formulas for the sums of points
are given All pomnts in the projective coordmates have
three coordinates x, y, z.
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The procedure of factorization consists of one or two
performed stages

Stage 1: During an iterative procedure let’s calculate a
new point P, on the curve (2):

P, = B(B-1)x..x2P, = B!P,

Let’s the pomt P, has the following coordinates
P.(x,, ¥;, Z,). Let’s calculate the greatest common divisor:

d=GCD(n, z,)

Let’s check the condition 1<d=mn. If it is performed,
then the desired divisor of the number n is found.
Otherwise, let’s move on to the second stage.

Stage 2: Let’s choose the number B, B<B,<p. Let’s
o=y, .. <, are prime mumbers, located within the interval
[B; B,]. Let’s calculate the pomts consistently C, = gP,,
Ci(u, v,, w,) and check the following term:

d=GCD(n,w,)>1 (3)

Once the condition (Eq. 3) 1s satisfied, we stop the
procedure. The required divider is found. If all numbers
q<B, are passed and the condition (Eq. 3) is not
performed, then the procedure 1s failed.

Ecm algorithm analysis: Let’s denote viat = #EC(p) the
mumber of an elliptic curve points (Eq. 1). According to
Hasse mequality, the following mequality 1s performed:

p+1-2 p<t<p+1+2J{) “)

and depending on the values of A and B coefficients t

may take any value within the range (Eq. 4). Let’s expand
t mn the product of prime factors:

— 1 1 bg!
t=p) xpl®..Xpg

Where:
P =2, py = 3 = Successive primes, ;>0
P = The greatest divider t

Let’s denote the greatest factor pi via M. For
example 1f t 1s a prime number, the only non-zero value in
this formula will be the last value r, =1 and M =1t.

The imtial pomt Py(x,, y,) of the curve (2) 1s
represented by the point P’ (%, mod p, y, mod p), with the
order t° which is the divider t of the point group
order (Eq. 1), thus tP°; = 0, where O 1s infimitely remote
point of the curve (2). In the projective coordmates of the
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point O the third coordinate is equal to 0. If you go back
to the curve (2), the third coordinate z of the pointtP is a
multiple of p, 1.e., z = hp for some integer h (due to the
relation z™ '= z mod p = 0). Therefore:

GCD(n,z)=p (5)

Hence, the strategy of ECM Method first stage
becomes clear: to provide the multiplier B! for the point P,
large enough that the number of points t on the curve (1)
tumned to be the divisor B!, then:

tP’,=0—=B!P", =0

and the third coordinate of the point B! P, will be multiple
to p that will ensure the method success at the first
stage.

If success is not achieved at the 1st stage of the
algorithm, then the following conditions should be
performed at the 2nd stage:

Bemax{p: |O<i<k} where pt are t dividers, except
the last one

1, = 1 is the greatest divisor t in the first degree

B.2py

The first condition means that the order of the point
P’y located at the first stage py. The terms 2 and 3 mean
that p, 13 within the range [B; B;]. Then the calculations
performed during the second stage of the method will
nevitably lead to to the factor g = p, and the calculation
will be completed successfully.

Definition: The number t 1s called B-smooth if every prime
divisor t does not exceed the number of B. The number t
is called gradually B-smooth if the degree of every prime
divisor t, ncluded in the expansion t does not exceed B.

Example: The number t = 360 = 2°x3’x5 is 5-smooth
and 9-grade smooth. Now, we can formulate the general
condition of ECM algorithm convergence.

ECM Method convergence term: The dimension t of
an elliptic curve according to the module p is either
B-gradually smooth number or 1s represented as the
product of two factors t = sxp,. Where the number
s 18 B-gradually smooth and p, 1s a simple factor which
does not exceed the limit B,.

Smooth numbers are discussed in detail in a review
study (Granville, 2004). Let’s denote (x, y)<x. At the
values y, comparable by order with x the value of the
function Yi(x, y) may be calculated according to the
following asymptotic formula:
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Table 2: Dickmann de Bruin function valie distribution for u<10
o(s)

0.31
4.9x107
4.9x103
3.5x10%
2.0x10°
8.7x107
3.2x10°%
1.0x10°
2.8x10!1

=

LYo BB I T N 5 )

—

Yix, y) =x*p(u)

where u = In x/In v, p(u) is Dickmann de Bruin function
(Granville, 2004). Let’s demonstrate the table of this
function values u<10 (Table 2).

RESULTS AND DISCUSSION

Analysis of ECM algorithm complexity: To estimate the
total number of operations, let’s note that one operation
of addition or doubling of an elliptic curve point in
projective coordinates consists of a constant number of
operations (about 20) in the ring Zn. Thus, it is enough to
count the number of addition and peint doubling
operations at the 1st and the 2nd stage of ECM
algorithm.

To assess the complexity of the algorithm 1st stage,
we use Stirling’s formula to estimate the value Bl:

o)

[~

Where:
log,B!~Blog, B

Hence, the number of operations with EC points 1s
equal to the value 2B log, B. At the second stage of the
algorithm, the following operations are performed
sequentially C, = qP,. Before the proceeding with this
step, it is necessary to make a table of point values in
order to speed up these operations 2P, 4P,,...,2gP,.

For a small value g and then the calculation of the
next point C; = g P, may be performed according to the
following Eq .6:

Ci=q.,B+ (qi — )P1 =C, +2jR (6)

using only one addition operation as the value 2j P, will
be taken from the table. Thus, the number of operations at
the 2nd stage is the sum of prime numbers within the
interval [B; B,] and some constant. This number is
asymptotically = B,/In B..
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Calculation of operations number due to the curve size
smoothness: T.et the number of points on the considered
curve (1) 1s still equal to t. Let’s consider the different
options for t number smoothness.

Case A; tis a prime number: Tn this case, the first step of
the method may be omitted and only the second stage 1s
performed. The number of operations makes the value of
O(t/ln t) and in the worst case, when the divisor is
approximately = +/n , it is estimated by the following value
O(fn /Inn).

In this case, ECM Method 1s comparable to the trial
division method and is worse than most other exponential
methods listed in the study.

The probability of such an event performance is
equal to the frequency of prime numbers occurrence and
makes, p{A)~1/Inn** = 2/In n. In fact, this probability will
be slightly lower as the given number is equal to the ratio
of prime numbers n the range from 1 to t to the mterval
length and prime numbers appear more frequently at the
beginning of the interval and rarely at the end of it.

Case B; t is smooth /i number: In this case, all the
divisors t are <4/t . If you take the constant B = n'*, then
the procedure will end at the first stage and will be
assessed by the following value O{n'*xIn n).

In this case, ECM Method does not win by
comparison with the most exponential methods listed in
the study. Even if we accelerate the algorithm performance
by the second stage, the total score will be no better than
O(HIM).

Let’s note that the probability of event B performance
is equal to the allocation frequency +t of smooth
numbers within the interval close to t. This probability is
estimated as the following value:

w(tt)/t - p(2)=03069

Case C; t is tY* a smooth number for some natural
number s: This case summarizes the case B. It 15 easy to
understand that the constant B in this case may be less or
equal to t'* and the total number of transactions is
estimated by the following value C(n"™).

This estimate is an exponential one and exceeds the
asymptotic estimate for the majority of section 3
algorithms at s23. The frequency of C cases occurrence
depends on the number t'* the smooth mumbers and are
estimated by the following value:

IIJ{:tllp(ﬁﬂ“l

g

8
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The analysis of the function values p(u) indicates
that the achievement of method performance high values
with the increasing s 1s available for a small percentage of
curves of a determined mterval. For example 1f s = 4 the
difficulty of factorization is estimated by a sufficiently
effective assessment of O(n'®). At that the share of
curves on which this estimate 1s achieved 1s equal
approximately to 4.9x107 ie. such a curve cccurs once for
200 If two hundred curves are started
simultaneously, it will increase the overall assessment of
the complexity in 200 tunes. The question of such a
decision effectiveness 1s determined by the divisor p of
the number n. The greater the value p, the better to take a
greater number of curves.

In general case, at a fixed value of u the frequency of
a desired curve appearance is equal to p(u), so the
average number of curves required for the emergence of
such a curve is equal to 1/p(u) and the overall assessment
of performance makes:

cases.

7

The minimum of f(s) function depends on the
dimension p and determines the number of curves to be
selected, so that the evaluation 13 optimal. In the next
study, we present some numerical calculations for fixed
lengths of the argument p.

Tt should be noted that Eq. 7 is valid only for small
values of u For large u values one should use the
estimate of the number (%, y) given by Lenstra (1987) in
his main study and based on the assessment of the
number x" given in an earlier study by Canfield et al.
(1983). Let’s consider the following function:

L(X):em

Theorem (Canfield, Erdos, Pomerance Theorem
consequence 3.1): Let «>0 153 a real number. The
probability of the fact that a random integer t<x has all
simple dividers <(L(x))" = L(x)"™" at x—+<,

The necessary probability 1-e®, g 1s a small positive
number, the event p<(L(x))" 1s achieved, when the number
of curves is equal to gL(x)"**. The total time is estimated
by the followmng value:

L(X)ngL(X) V2o _ gL(X)uﬁ- 120

This value achieves its maximum if it 15 (c+1/2¢) = 0,
where & = 1/4/2 . At that the value oL (x)™ :gL(X)ﬁ )

Statement 1: ECM algorithm finds its smallest divisor p of
the number n with the probability 1-e during the period:
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xM(n})
where M(n) 1s the time of one addition operation
performance for an elliptic curve points of n dimension
(Lenstra, 1987).

Lenstra called the statement 1 a hypothesis, since it
is based on the assumption that the smooth numbers are
distributed within the following interval:

[p+1-2ypip+1+2yp |

with the same frequency as the entire interval [1; p] which
is generally not true (smooth numbers are closer to the
beginning of the interval [1; p] they are obviously located
more frequently).

Calculation of curves effective number at fixed p: Let
p = 10" which corresponds to the length of the argument
RSA n = 10" approximately, 330 bits. According to the
Eq. 8, we calculate the optimal value of ECM algorithm
runming time:

gL(X)ﬁ y M(n): ge,izmummlmuﬂ’ % M(n)z oM (n)x 104
At that the number of curves should be equal to:

gL(X)IIZm _ gL(X)“NZFﬂO“Xg =13162 g

With the argument increase the number of curves
required for maximum performance 1s also increased, so in
the boundary cases of ECM application it is difficult to

achieve such a number of parallel calculations.
CONCLUSION

Lenstra algorithm analysis showed above, leaves a
number of open issues related to the application of the
algorithm.

The 1ssue of uneven
distribution of smooth numbers at the beginmng and the

first one relates to the

end of the considered mtervals and clarifying the formula.
The second question relates to the selection of the
optimum number of curves: which values of the p divisor
may help to achieve a realistically optimal value at which
the most efficient implementation of the algorithm is
achieved?

The third experimental
calculations of the method performance at different p

issue  concerns the

divisors.
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Another problem is related to the choice of the
boundary B at the first stage of Lenstra algorithm. How an
option B 15 associated with the probability of successful
completion condition performance concerning the second
stage of the algorithm?
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