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Concerning the Issue of Object Classification by Form
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Abstract: During the solution of applied problems related to the detection and classification of objects creating
a real scene as the source of information the images are used often. On the images the scene objects are
represented by their projections on a plane perpendicular to the observation trend. Therefore, during the
classification of objects an unportant telltale sign 1s the form of their projections which are the subsets (figures)
on a plane. In contrast to the visual classification when the comparison of plane figures by form may be
performed almost at a subconscious level, an automatic classification requires a formal definition of this term.
The development of an object projection according to a real scene image called segmentation 1s quite a
challenging 1ssue. The projection obtained from the segmentation usually differs from previously prepared
projection with which the comparison occurs. This means that the method of projection comparison by form
must be resistant to the errors arising during segmentation. The research consists of two parts. In this first part,
the formalization of a plane figure form as the probabilities of chord length distributions, cut out by the figure
from a random line. The independence of the form on shifts and turns 15 proved. It 1s shown that the comparison
of figures by form is reduced to the test of two sample homogeneity hypothesis. Tn the second part of the
proposed definition of the form is used for the classification of vehicles. The initial information for solving this
problem are the images taken from aircrafts.
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INTRODUCTION

During the visual interpretation of images the form of
objects presented on the stage is an important telltale
sign. However, its use i automated deciphering
encounters serious difficulties associated with the lack of
convenient formalization. Therefore, despite a relatively
large number of publications (Zhang and Lu, 2004,
Furman, 2003; Mestetsky, 2009; Yukhno et af, 2001),
dedicated to the presentation of different approaches to
the definition (formalization) of form, the research in this
area, still remain relevant ones.

In the research (Fofanov and Zhelezov, 2007), the
formalization of the form definition for a limited convex
related subset of the real plane R* s the distribution of
probabilities Py a chord length which is cut out by the
subset B from a randomly selected straight line of the
plane. The pluralities are set by closed rectifiable curves
C that describe the equations of the following form
F(x,y) = 0. Tt is assumed that curves do not have multiple
points and that the function F 1s continuous one. Next,
the subsets B will be called figures and the curves C will
be called their boundaries. The first part of this research
is devoted to the proof of the invariance of the proposed
form defimtion in (Fofanov and Zhelezov, 2007)

concerning shifts and turns. When vou solve the 1ssues
for comparing the shape of two figures, 1t 1s proposed to
use the methods of mathematical statistics. First, they get
the samples from the chord lengths for comparable
figures. Then the samples are used to test the hypothesis
of umformity. Here, we propose a generalization form for
figures that are not convex ones.

In the second part of the research, the proposed
defimition of the form 1s used for the classification of
vehicles.

FORMALIZATION OF FORM

Regardless of the approach in use, the form definition
must satisfy a number of obvious requirements. In
particular, the figures obtained from its source by parallel
transfer (shift) or its rotation relative to a selected point
shall have the same shape. These transformations form as
we know, a group of movements to R®.

Let C is the boundary of a convex shape B and L(C)
15 1ts length. We fix some point O on C as a reference one
and set a positive direction. This allows you to set
between the curve C and the points of the segment
[0, L(C)] for a straight line
correspondence. The pomt t[0, L(C)] 1s associated with

a certain mutual
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the point M = (x,y) on C, located at a distance t from O.
That is there are the representations f and g on [0, T.(C)]
such as that x = f(t) and y = g(t). Let's extend these
representations for the remainder of the line by the means
ofthe equation f (T+ L(C)) =f(t) and g (HL{C)) =g (t), i.e.,
let’s assume that f and g are periodical ones. Since, we are
talking about the limited figures, there are numeric
constants X, and X,, Y, and Y, such that X <f(t)<X,,
Y <g(t)<Y,.

Then, let’s assume that f and g are both Borel ones.
Therefore, it 1s desirable to indicate the class of figures for
which this assumption 1s satisfied. First of all, we refer to
the well-known result (Tutubalin, 1972), according to
which all continuous functions are the Borel ones. In
the case, when the set B i1s a polygon, one may
prove the continuity of f and g functions directly. In fact,
let t, and t, are the point from [0, L.(C)], corresponding to
the vertices M, = (x,, y,) and M, of the polygon, which are
comected by a lme M, = (x,, y,) segment, set by the
equation axtbytc 0. Without the lunitation of
generality, we assume that t,<t, and that x = f{t,)<f(t,) = x,.
If M = (x, v) is a point on the selected segment of the
boundary C corresponding to the point t{t,, t,), then at
a=0and b=0 it 1s easy to show that:

x=fiy="2"Ft t)ex,

ERR

a c
y=glth= _Ef(t)_ 5

That is f and g are continuous functions. Ifa=0,b #
0, then:

X%

x=f(t)=

- t-t)+x,

Z 1

c
Y*g(t)**g

Ata# 0andb =0 ina similar way with the previous
case, we obtain the following:

) .
x=fi)=-" y=gn=""""t 1)1y,

2 1

That is the displays f and g taking the point te[t, t,]
to the point M = (x,y) of the segment, connecting the
vertices M, = (x,, y,) and M, = (x;, ;) of the boundary are
continuous ones. It is known that the representation
p: R—=R of the following form:

1/L{C) t [0, L(C)]
plti= ot
.t eRA[0, LC)]
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is the density of a random value £ uniformly distributed
on [0, L(C)], determined by the equation £(t) = t. We will
call it further a random point.

Each pair of random points on t,, t, corresponds to
the pair of points M, = (ft,) g(t,)), M, = (f(1,), g(t,)) on the
curve C. By assumption, f and g are Borel functions, so
the coordinates of the points M, and M, are random
values. Each pair M,, M, of points on C explicitly defines
a particular line on R*. Obviously, there is a certain mutual
correspondence between the lines crossing the figure B
and the pairs of points on the curve C. Similar with the
random dots, such lines will be called randomly straight
ones.

The intersection of a convex figure B with a random
straight line is a segment. Then, it will be called a chord,
a cutout figure B from a random line. Since the chord
d(M,, M,) length has the form:

d(M1>Mz):\/(X1 —x,) =y, -y,

Tt is a random variable at Borel fand g. Tts distribution
of probabilities Py 18 offered to consider as a form of a
convex figure B. Two convex figures B and A will be
considered the same by form if the same distributions of
probabilities Py and P, coincide for the lengths of chords,
cut out by these figures from random lines. Let’s show
that the probability distribution of the chord lengths is
independent of the coordinate system selection at the
boundary C.

Theorem 1: The distribution of the chord length, cut out
figure from a random direct line does not depend on the
choice of coordinates on C.

Proof: If you select ancther calculation origin & on the
curve C, each pair t,, t, of random pomts from [0, L(C))]
will define two pairs of pomts onthe curve C. The pair
M,, M, in the coordinate system with the origin at O and
the pair M,, M, inthe coordinate system with the origin 0.
The chord d(M,, M) and ai,, M,y lengths will in general,
different. However, the distribution of the chord lengths
will be the same in both cases.

Let f is the Borel representation of the type
[0, L(C)]—[X,X;], coresponding to the reference pomt
O, t umformly distributed on [0, L(C)] is a random variable.
Therefore, f(t) is also a random variable and its density is
the following one (Tutubalin, 1972):

p(f ()

— f_l f_lﬂ —
P 9= 17 =2

Since P is a uniform distribution density, we obtain:
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0, inothercases

Note that the inequality 0<f'(x)<L(C) on the right
part of the last equality is equivalent to X <f(t)<X,.

Let O is another reference point on the curve C, to
which the point ac[0, 1.{C)[ corresponds within the first
coordinate system. If f:[0, L(Q)[[X,.X,] is the display,
corresponding the reference point O, then for every point
we get fty=fa+o. From this equation, it follows that
=" (x)—a Therefore,

0= pE-10) By |== P00
Pyt~ p-00) | 0 == P

Taking into consideration the type f, we cbtain:

1 -1
p%(x) _ 7}4((:) T ,asf () <a+ L(C)

0, inothercases

The inequality a<f™'(x)<atL(C) of the equation right
side is equivalent to X, <f(t)<3. Thus P(x).

Let’s consider a new coordinate system which only
differs from the original one by direction. In this case for
every pointte[0, L(C)] we get that ) = (L(C)- t). From
this equation, it follows that '(x)=L) - f'(x) and its
derivative £ (x)=—f"(x). Thus:

1
p;(x)=1 L(C) [ f{x)|°
0, inothercases

0< LI -7 x) < L),

Therefore, p;(x) = pe (x), QED. In the same way, we
prove the independence from the chosen display
calculation origin of g type [0, L(C)]—[Y,.Y;] that
associates each random point te[0, T(C)] with a second
coordinate Y = g(t) of the point M,(x, y) on the curve C.

FORM PROPERTIES

Let’s show that the shape of the figure 1s not changed
under a parallel displacement. Let T = (t,, T,)eR’ is a fixed
vector, B is a subset on R* and is a set cbtained by
parallel transition of B on the vector T, i.e.:

B, = {xy)eRux=b +1,y=b, +1,(b,b,) B}

In this case, the equation of the set boundary B, has
the following form:
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Fx-t,y-1,)=0

If the boundary C of the set B 1s rectifiable, then
the boundary C, of the set B, 1s rectifiable too. In fact, let
M, = (%, y) and M, = (x,, y,) are the vertices of the
polygon inscribed in the border C. With the parallel
transfer of B on the vector T = (1, T,) they will be
transited m points M, = (x,+71, y,+T;) and M, = (x,+1,,
y;+1,) borders C.. Ttis evident that d(M,, M, ) = d(M,, M,).
This means that every polygon inscribed in C,
corresponds to the polygon inscribed in C, with the
same periuneter. If C 1s rectifiable, then at the reduction
of the distance between the series vertices of the polygon
perimeters built on the boundaries C and C, converge to
the same limit which is the length C and C,. Consequently
if B 1s the figure, then B, 1s also a figure and vice versa.
The following assertion is fair for the figures B and B..

Theorem 1: The figure B and the figure B, obtained from
1t with a parallel shift on the vector T = (1, T,) have the
same form, ie., B, =P .

Proof: Let t, and t, are accidental pomts on [0, L(C)]. From
the stated above, it follows that if M, = (x,, ¥,) and
M, = (%, v,) the ends of the chord cut out by figure B,
then after a parallel shift, they will go to the ends
M, = (x+7,, ¥,+1,) and M, = (x,+T1,, y;+7,) of the chorde,
cut out by figure B,. At that d(M,, M) = d(M",, M’,).
Therefore if the representations f and g are the Borel ones,
then the lengths of the two chords are random variables
with the same distribution, QED.

Let’s prove the invarance of the form under turns.
Let ¢ 1s a fixed angle, measured from the horizontal axis
anticlockwise B is the subset on R’, a B, the result of B
turn reative to 0 = (0, 0) on the angle ¢, 1.e.:

B.= {{x,y)eR*x = b, cos u-b; sina, y = b,
sin ¢+b, cos «, (b, b,)eB}

In this case, the equation the subset B, border
becomes the following one:

Flxcos oty sma-xsmatycosa) =0

If the boundary of the set B is rectifiable, then
the boundary of the set B, is also rectifiable. Indeed; let
M, = (x,, y,) and M, = (x,;+y,) are the vertices of the
polygon inscribed in the border C. At turn B on the angle
¢ the will turn to the following points:

M, = (%, cos b=y, 8in ¢, X, $in ¢+y, cos o)
and:
M, = (x; cos a-y, 8111 &, X, Sin ¢+y, cos o)
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C, borders of the figure B,. Tt is easy to verify directly

(

((x,—x,)sina+(y, -y, )cosoc)2

) e w) =)

This means that every polygon inscribed in C,
corresponds to the polygon, inscribed in C, with the same
perimeter. If C 15 rectifiable one, then at the decrease in the
distance between the tops of the sequence from polygon
perimeters, built on the boundaries C and C,, converge to
the same limit which 1s the length C and C,. Thus if B is
the figure, then B, is also the figure and vice versa. The
following statement is fair for the figures B and B,

that:

~ (x,—x,)cosa—(y, - yz)sincc)2 +

d(M',M",)

Theorem 2: Figure B and the figure B, obtained from it by
turn relative the coordinate origin on the corner & have
the same form, ie., B, =F; .

Proof: Let t and t, are accidental pomts on [0, L(C)]. If
M, = (x,, y,) and M, = (x,, y,) are the ends of the chord cut
out by figure B, then after a turn relative to the beginning
of coordinates by the angle «, they will turn to the points
M’ and M, of the boundary C, of the figure B, It is easy
to verify directly that the two chords have the same
length. Indeed:

((X1 —%,)cosa—(y, — yz)sincc)2 +

d(M',M",) _ )
((x, —x,)sina+(y, -y, Jeosar)

Vx4 (v - y.)  =a(M, M)

Therefore if the representations f and g are the Borel
ones, the lengths of both chords are random variables
with the same distribution, QED.

When you rotate relative to an arbitrary point ¢cR?,
youmust first perform a parallel transition of the figure on
the vector -a and then turn the shifted figure relative to
the origin of coordinates and then perform the parallel
transition of the turned figure to the vector a.

COMPARISON OF FIGURES BY FORM

Thus, the comparison of figures A and B by form
from a formal point of view, means the test of the
distributions P, and Py equality for the chord lengths, cut
our by these figures from straight lines selected randomly
on a plane. The obtaining for specific figure A of its
distribution P by theoretical calculations in general may
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be quite challenging. Therefore, it is advisable to use the
methods of mathematical statistics. They allow you to
check the equality of distributions P, and P; by
comparing random samples obtamed from these
distributions. Note that obtaining of random samples for
chord lengths practically does not depend on the kind of
figure.

Indeed, let A and B are comparable figures and
n, and ng is the number of non-dependent random
lines intersecting A and B, respectively. Let I, = (L., ),
and Iy = (ls ), are the samples of the chord lengths cut
out from these lines by the figures A and B. The
assumption about the equality of distributions P, and P,
in mathematical statistics is called the hypothesis of
homogeneity (Cramer, 1948). In order to test it let’s divide,
the set of real numbers R into s of ntervals. Let m,; and
mg; is the number of sample elements 1 and 1,
respectively within the jth interval. Tt is known that at
equality of distributions P, and Py the distribution of
statistics X; . of the type:

strives at (n,+n,)—>+eo top the distribution %* c(s-1) by the
degree of freedom. Therefore, the probability to be in the
range of [t+e<] for statistics X7 15 equal approximately
to P(y’2t).

This allows us to reduce the comparison of figures by
shape to test the hypotheses of homogeneity. Tn fact,
let’s set a small positive number & (for example, 0.01 or
0.005) and solving the equation P(¥*2t,) = & with respect
to t,, let’s create the critical region [t go]. If for the
calculated value of the statistics XZ _ ~ the inequality
X .. zt, 1s performed the hypothesis of distributions
P, and P; equalty is rejected. Thus, & has a clear
meaningful interpretation. Tt is equal to the probability of
a correct hypothesis rejection.

Fmally, we tumn to the description of non-convex
figure form. The principal difference between a

M

g 1
= nAnszi

i=1 IHA‘] + mB,j

2
XnA+nE
n,

non-convex figure from the convex one 1s that its
intersection with a straight line may consist of several
segments which will also be called chords. Consequently,
the direct application of the proposed defimtion of the
form for the comparison of non-convex shapes is not
suitable.

Therefore, we associate each non-convex figure not
one but a pair of random variables. The first random
variable will describe the number of chords that the figure
cuts out of a straight line. The second one is the sum of
all chords lengths cut out from the lLne. Thus, a
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non-convex shape of the figure may be seen as a
two-dimensional random variable or its distribution. Two
non-convex figures should be regarded as the same
shapes if their distributions coincide. Obviously, the
figures obtained from each other by parallel transition or
turn, will have the same shape. If you apply the definition
of a non-convex figure to describe convex figures, the
random variable that describes the number of cut out
chords will always accept (with the probability equal to
unity) the value of 1. This means that the definition of the
convex shape form 1s a special case of determimng the
form for a non-convex figure. Thus for the comparison of
two figures by shape, it iz quite difficult to obtain a
two-dimensional sampling and test the hypothesis of
homogeneity for each of them.

SUMMARY

The form definition offered in the research may be
used to compare plane figures in order to solve the
applied problems.

CONCLUSION

The proposed definition of form for a plane figure is
mnvariant under transitions and rotations. The method of
figure comparison by form from a computational point of
view is quite simple: it is reduced to the hypothesis of
homogeneity testing. It does not require prior training and
is independent of any constants, an unfortunate choice of
which affects the outcome.
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