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About Algorithm of Smooth Numbers Calculation
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Abstract: An integer n>0 is called y-smooth if p<y condition is performed for every prime divisor. If the
boundary y is considerably smaller than the number n, then such a number is the product of a large number of
small prime factors (it is a smooth one) as opposed to simple numbers which are not decomposable into simpler
factors. Smooth mumbers play an important role m the theory of numbers and cryptography. In particular, the
fastest modern algorithm of integer factornization (decomposition mto a product of prime factors) 1s based on
the idea of a large number of y-smooth numbers finding where vy is the boundary of the so-called factor base
which is much less than factorisable number n. Let’s denote the number of y-smooth numbers via Y(x, y) within
the interval from 1 to x. The calculation of Y (x, y¥) function is a complex computational problem, therefore, the
researchers proposed various algorithms for the approximate calculation of this function for different ratios of
the argument values. In this study, we describe a new polynomial algorithm for the approximation of (x, y)
function concerning the number of y-smooth numbers within the mterval from 1 to x. The algorithm
1s based on the formula of Euler-Maclaurin summation and provides a sufficiently high level of accuracy. The
study shows the experimental data for the calculation of smooth mumbers number for the argument x<10% and
y<log x.
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INTRODUCTION

Let’s provide the definition of a number smoothness.
Let y=0 is a positive number. The integer n>0 is
called y-smooth if the condition p<y (Pomerance, 1995;
Ishmukhametov, 2014) 1s performed for every prime
divisor p of the number n.

Smooth numbers play an important role n number
theory and cryptography as the antipodes of primes. For
example, the known method of RSA public key
cryptography 1s based on the problem of the complexity
of the issue concerning the decomposition of a
natural number into a product of prime factors
(Ishmukhametov and Sharifullina, 2014). Some factoring
algorithms such as Lenstra Factorization Method is based
on elliptic curves (p-1) Pollard Method (p+1) Williams
Method are based on the smoothness properties of the
numbers from the environment of factorisable number
dividers. Therefore, the rate of convergence for these
methods depends essentially on the smoothness of p+l
numbers where p is the divisor of n or the numbers from
[p+1-2 Jp: pH1+2 p ] interval for Lenstra Method.

Let’s denote via J(x, y), the function, equal to natural
numbers number n<x which 1s y-smooth ones. The direct
calculation of the function 1s not possible, thus the
recurrent Buchstab Yi(x, y) formula is usually used for
calculation:

W(X,pk): Z W{;:pk—lj @

D=ist,

Where:

Pe = k-e 1s a simple number

t, = [log ®/log p.] (by log x, we denote the natural
logarithm x

It 15 easy to understand that Y(x, y) calculation
algorithm by the Eq. 1 is an exponential one and allows to
perform the calculations only for small y values.
Therefore, different researchers studied the formulae of
P(x, y) function approximate calculation.

The researches (Ishmukhametov and Sharifullina,
2014; Hildebrand, 1986; Ennola, 1969; Bernstein, 1995,
1998; Ishmukhametov et al., 2013) show the calculation
formulas for different wvalues of Y(x, y) function
arguments. The classical formula for the approximate
calculation of Y(x, v) is the formula:

Wix,y)axxp(u) (2)
Where:
u = Logx/logy
p (1) = The Dieckmann de Bruijn function which is the
solution of the differential equation:

up'(u)+p(u-1)=0 (3)

with the ornginal conditon p(u) = 1 within the
interval [0; 1].
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The values of p(u) function are tabulated with a high
accuracy tabulated and its approximate value may be
calculated according to the following equation:

p(uyru™ (4

A simpler formula is performed for x = y*
wlyhy)x y* (1-1n2)(4)

The assessment (Eq. 1) is valid only for large y.
Actually, Bruin showed that the equality:
}}=X——y“ )

may be performed for y=exp(log log =)™, In Hilderbrand
(1986), extended the interval of convergence for the Eq. 5
to y=exp(log log x)*** and also showed that Eq. 5 will be
implemented even for y>(log xY*'* taking into account the
Riemann hypothesis.

These results are asymptotic approximations of
P(x, y) function at simultaneous striving of both
arguments x and y to infinity. Tn Ennola (1969), proved
in that for small values of the argumenty, the value of

log{u+1)
logy

w(x,y)—xxp(u){l+0[

Ir(x, y) may be calculated more accurately according to
2

the following Eq. &:
J{l+—0{———ll——_J} (6)
logxlogy

1
n{y!)

which is valid for y<(log x)'“ In fact, it applies to a wider

range of the interval y<(log x log log x)'".

In Bernstemn (1995, 1998), developed a new method of
P(x, v) approximation by establishing the rigid upper and
lower limits within which the calculated value of Ji(x, y) is
obtained. The advantage of this approach is that there is
the possibility to calculate (%, y) with a high degree of
accuracy in polynomial period time.

The method implemented in this study is relatively

logx
logp

w(xy)=

u

sinple and like Bemnstein's algorithm provides a sufficient
level of accuracy within a polynomial period of time. It
allows us to calculate the value Yr(x, y) with high accuracy
at large values of the argument x and y<log x.

FORMULAE USED IN RESEARCH
Let {2, 3, ..., P ...} 18 a set of primes and 7(t) 1s the

function of primes m(p,) = k The derivation of the
approximation formula is based on the Bukhshtab identity:

377

X
> Pra

i=0 k

J, t, =[Inx/Inp,], k=1 N

Mm@-i%

Let’s give the proof of this identity. Let’s denote via
S(x, pw), the set of all p,-smooth integers z<x. Let’s divide
S(x, ) into a series of non-intersecting subsets:

D;.j=0,1..1t, and t, =logx/logp,

D, = {z IS S(X,pk): zZ=pxt, (t=P) = 1}

The capacity of each of each subset D, is equal to the
integer from x/p/, thus the desired relation is obtained.

EYLER-MACLAURIN SUMMATION FORMULA

Also, we will need a well-known Euler-Maclaurin
summation formula in our study.

Theorem: Let a, b, b>a are positive mtegers and f{(t)-(k+1)
1s differentiable function within the interval [a, b]. Then:

where, B, Bernoulli numbers:

B, {1,

Let’s put down the formula at the value of k = 1
parameter by adding f(a) to both parts:

11
276"

1
730

1 0.5

0 ——
30 66}

ERg]

]

ORRIG
(7(a)-7'(b)

1
d1+~§(f(b)+—f(a))+ ©
C

—x
12

where, 0<C=1. The evaluation of the last addition follows
from the fact that for all t |B, (t)|<1/6.

APPROXIMATION OF ¥(x, y)

Let v = p® for a positive integer k. As p, are the
smooth numbers and are the powers of two, then:

y(x,p )=[log,x]|=log,x+¢,,0<g, <1 (10)
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Theorem 2: Let ¢¢>[>0 are real numbers, i is a positive
natural nteger and t = [e/p], then:

t B C(.Hl C(._l iBozi'l_
é(a nxB) (1+1)B+2 o2 a1
1
sz{2+12]ﬁ

where, 0<C,, C,<1.

Proof: Let’s substitute the function f(n) = (¢-nP) in Eq. 9.

Tt provides with the following:

ol -4
2

0L1+1 _ d1+1

ip

ixC

(a—nxB) = + 5

* B(oc"l —dH)

where, d = w-B=[a/p]<p. The last one proves the theorem.

Corollary: Lete: =Inz f=Inp, t= [InzInp] and p=<in z.
Then Eq. 11 may be put down as follows:

(IHZ)HI

. (lnz)1
(i+1)lnp,

2

(12)

i-1

ch xInp, (Inz)

where, 0<C<1. Indeed if p,<In z, the second error term may
be discarded.

Let’s determine the functionals Int, Id and Der of the
power function Z as follows:

+1

Int(z‘): jzidz: _Zl

1+

, Id(Zl): z, Der(zj ): iz (13)

Id and Der constitute a
*

The functionals Int,
commutative group according to * with Id as a umt:
Int>xId = IdxInt = Int, Id*Der = DerxId = Id, Int™' = Der,
Der! = Int. Let R,, R,, Re{Int, Id, Der}. Let’s define a
linear combination R, R; as (eR,+PR,) () = «R, (PHPR, (D).
Then: R (az+p2) = aR, (Z)+BR; (). Suppose that p<In z.
We may rewrite (Eq. 11) in the following way:

ot

n=0

2 (1
P} Inp,

Here, In p<R is the wrong term containing the last
term of (Eq. 12). The action of R satisfies:

Int + %Id +lnp;* RJ(lnz)1 (14)

R(lnz) < %x Der(lnz) (15)
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APPROXTMATION DERIVATION

Ishmukhametov er al. (2013) provides a detailed
derivation of the approximation formula based on the
properties of the functionals TInt, Td and Der
interchangeability. We omit here this conclusion and
present the final formulae. Let's define, the auxiliary
functions hix, k), the approximating functions i{x, p_k) by
induction:

h(x,l):éxlnx

Int + l Id]

h(x,j + 1): {lnp
g+l

h(x,j)=(8,,)h(xj)j=1
Theorem 3: For all x and y<In x:

wix,p, )= h*(x k)= R{xk) (16)

where, R(x, k)<IT¥_, (1-+/12 In x).
OBTAINING OF SUMMAND FORMULAE h(x, k)
In this part, we will put down the expressions for the
summands h(x, k). Each h(x, k) 1s the polynomial of the
degree k with the variables In x:
hix, k) = o, (In x)"+a, (In x4 e,
The application of Int to the summend h (x, j)

increases the degree by 1 while Td does not affect the
degree, so the older term h(x, k) 1s equal to the result of

the subsequent applicationInt, = 1/Inp,Int.j =2, 3, ...k to
lnx:
k 1 k
h (xk)=a, = (Inx)" = E(I_L=2 Int, )(lnx) (a7
Therefore:
k
a=T1 (18)
k!5 Inp,

The full expressions for the subsequent a, values are
too bulky, so they are not listed here.

ALGORITHM IMPLEMENTATION
AND MAIN RESULTS

First of all let’s make a brief comment about the
practical calculation of the function Y(x, y) at large values
of x and y<In x.
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If you use Eq. 6 to calculate (%, p,), then it is
necessary to calculate [In x/In p,] values of the function
P(x/(In p.), pe) and each such calculation makes a lot of
calculations for Yz, p.,), ete. which causes a rapid
expansion of the computation tree. At p, = 2, we should
use Eq. 10 to calculate the values, necessary for the
computation of J(z, p,), then Y(z, p,) and so on in reverse
order, until the last expression 1s calculated. This provides
the algorithm with time-consuming proportional (z, v). It
has an exponential complexity, belongs to the NP class of
complete problems and may be executed within k = n(y)
steps on the non-determined Turing machine. On the
other hand, the calculations based on the determination
of the function hix, k) are very fast ones. We need to
provide a table of logarithms for all primes >y and also the
table (In x) for y<k. Thus each computation of each
h (%, k), k=1 requires only three vector operations Int, Td
and Der applied to a polynomial function hix, k-1), 1.e., has
a polynomial estimation. Let x>2 and v = p<In x are
chosen and a; ; 1s the coefficient at n degree In x in h(x, 1).
Then:

]

hix,j)=>ax (lnx)j_i

i=0

To preserve the summands hix, j) for j<k, the
two-dimensional matrix H is used:

H[ij]=a (Inx)
Program operation description.

Tnitial stage: The development of natural logarithm
table for all primes >y and setting the real constants
LX =[log 10] and Cid = 0.5. The mitial values of the matrix
H are set equal to zero.

Step 1: H[1, 1] = LXA2*In 2).

Step i>1: Let’s calculate the array H elements [1, 7], 1<j<i,
using i the first line of the matrix H. (The functionals
Int,, = Int/In p,,, and Id/2):

H[i,1]= H[i-11]xCid, H[i,j]=H[i-1j—-1]x

LX . . ..
N H[i-1ilxcd 2 <<
(i-s—l)xlnpi+ -1l =

LX
Hl|i,i|=H[i-1i-1{x——F—
1] -1 ]X(i+1)lnpl

Let’s present, the results of the program operation in
the form of a table, the first column of which contains the
smoothness and the second the set of numbers with the
specified smoothness not exceeding 10 (Table 1),
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Table 1: The set of numbers with the specified smoothness not exceeding

1025
Numbers Values
Y=k Y(10%, y)
3 4393
5 28632
7 130143
11 459650
13 1518471
17 4541653
19 12605963
23 31238861

CONCLUSION

These data indicate an adequate accuracy of the
algorithm presented here and the prospects of its use for
the calculation of the function Y(x, y) concermng the
values y not exceeding log x.

In our study, the issues concerning the accuracy of
these formulas and the estimates for the remainder terms
that should be considered in subsequent publications
were not considered Note that only three terms of
Euler-Maclaurin summation formula were considered by
the algorithm. The increase of summand number of terms
in this formula should lead to a greater accuracy of the
algorithm. It should be noted, however that there is
another kind of error within the formula that occurs when
you replace the discrete function [log z] with the
analytical function log z. This kind of error s difficult to
estimate but for large x values the corresponding errors
may be assessed by their averages.

Based on this, we may conclude about the prospects
of the proposed approach for the calculation of smooth
number amount function Yi(x, y).
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