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Abstract: A positive integer n is called the y-smooth for some positive number y if all prime divisors n are
bounded above by the number y. A natural number n is called the y-power smooth if every prime power
dividing n 1 bounded above by the number y. In order to assess the cryptosecurity of some algorithms with
public-key encryption such as the known method RSA, it 1s necessary to be able to calculate the function
concerning the number of smooth and power smooth numbers within the set numeric intervals. Each y power
smooth integer n 18 also an y-smooth but the reverse 1s not true. Let’s denote by (x, y) the amount
of y-smooth mtegers mn the range from 0 to x and by J*(x, y) the amount of y-power smooth numbers ranging
from 0 to x. The defimtion implies that {*(x, v)<Wr(x, y). In the scientific literature, one may meet a large number
of publications devoted to the algorithm for calculating or approximating the function yi(x, v). However, the
publications by the function *(x, y) are almost absent. At large x and y the values of these functions are
similar, however for large x and small y the values of Yr(x, y) and \r*(x, y) are sigmficantly different. In thus study,
we give an overview of algorithms for calculating the amount of smooth and power smooth numbers at
predetermined intervals and show our own results and observations.
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INTRODUCTION

Let y is a positive number. A positive integer n is
called y-smooth if any prime divisor p of the number n
satisfies the term p<y. A natural number n is called a
power smooth one if any divisor of n which is the degree
of p* for a prime number p, satisfies the term p*<y.

Each y-power smooth number 1s y-smooth one. The
converse 18 not true and there are y-smooth numbers
which are not y-power smooth. For example, 16 15 a
10-smooth but not 10-power smooth.

We denote by U(x, y) the function, equal to the set of
natural numbers not exceeding x which are y-smooth and
through *(x, v) function, equal to the set of natural
numbers n<x which are power smooth ones. From the
above, it follows that Y*(x, y)<(x, y) for all x, y. The
smooth and power smooth numbers play an important role
i number theory and cryptography and are used to
evaluate the convergence of various theoretic number
algorithms (Bernstein, 1995, 1998; De Bruijn, 1966;
Hildebrand, 1986).

In Crandall and Pomerance (2005), Tenenbaum (1995)
and Ishmukhametov (2014), one can find a necessary
supporting material. In Hunter and Sorenson (1987),
Hildebrand (1986), Hildebrand and Tenenbaum (1993),
Hunter and Sorrenson (1997) and Parcel and Sorenson
(2006) different algorithms are considered for the
approximate computation of the function P(x, y). The

study describes one of the applications concerning the
concepts of smoothness for the development of a fast
factorization algorithm on elliptic curves (Amer et al.,
1992).

Smooth numbers play an mmportant role for the
assessment of convergence concerning many theoretic
number algorithms. Let’s discuss the application of the
smoothness concept in the following studies.

SMOOTH NUMBERS

Smooth numbers play an important role in assessing
the convergence of the known factorization algorithms as
the Number Field Sieve (NFS3) and the Quadratic Sieve
(Q8) Method. More specifically, on the basis of these
both methods the search procedure of y-smooth numbers
15 developed where y is the upper border of the base
numerical factor. NFS Method is more efficient one
because using the algebraic number fields the procedure
of smooth numbers search may be more effective. When
the required number of y-smooth numbers is found, a
system of linear algebraic equations 1s developed with the
coefficients of F, = {0, 1} plurality and its solution
provides the desired divider of a factorisable number.

The study of the smooth numbers distribution allows
us to provide, the convergence assessment of NFS and
S methods to specify an upper limit for a solution search
periad.
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Other applications of the concept of smoothness are
in the number theory and other branches of mathematics.
A detailed review of the applications concerming the
concept of smoothness may be found in the review
articles written by Granville (1989, 2004).

Tt should be noted that the concept of smoothness
was studied by various mathematicians and a lot of
different approximate formulas was found for the
calculation of the function J(x, ¥).

POWER SMOOTH NUMBERS

Power-smooth numbers also play an important role in
number theory and cryptography but they were studied
much less. It should be noted, first of all the use of power
smooth numbers to assess such factorization algorithms
as (p-1) Pollard Method, (p + 1) Williams Method and
most importantly, the method of Lenstra the Elliptic
Curves Method (ECM). All of these methods are based on
the properties of number smoothness from the
environment of a factorisable number dividers.

The latter method is the only subexponential method
1n this group, the rate of convergence of which determines
the smallest divisor of a factorisable number. This allows
the use of this method m cases when other methods,
including NFS and QS are useless. For example, the full
expansion of the 10th Fermat number became possible
only due to ECM Method.

Since, there are no direct algorithms to compute the
function Y*(x, y) now a days, then at the assessment of
these methods convergence the algorithms are considered
for the estimation of Y(x, y) function which gives
inaccurate assessments for assessing the ECM Method
and similar methods. Moreover, the procedure of the 1st
and 2nd Method stages selection is also not effective
because of errors m the evaluation of power smooth
numbers distribution. Therefore, the problem of finding
the estimates for the function y*(x, y) plays an important
role in the analysis of factoring algorithms.

FORMULAE FOR THE CALCULATION
OF SMOOTH NUMBERS FUNCTION

The exact value of the function Y(x, y) may be found
using the recurrent formula which is called the Buchstab’s
identity (Tenenbaum, 1995):
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The values x and y in the arguments of the function
P(x, ¥) reach thousands of bits for modern applications.
So, 1t 13 not possible to calculate the exact value according
to Eq. 1. Therefore, it is necessary to use some
approximations.

Today, there are many algorithms that allow to
calculate the approximate value of the function (x, y). At
the heart of many of them 1s well-known Dieckmann De
Bruijn (1966) result:

Yix,y)rxxp(u) (2)
where, u = log x and p is Dieckmann de Bruijn function
which 1s the solution of a differential equation:

up'(u)+p{u-1)=0 (3)

with the original condition p(u) = 1 within the interval
[0; 1]. The values of p(u) function are tabulated with a

high accuracy and its approximate value may be
calculated according to Eq. 4

p(u)xu™ (4)

This estimate 1s true for large y. Bruyn showed that the
identity:
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result in giving the approximation of Y*(x, y) for all y>2.

As for the function (%, y), the calculation of its values
was not performed and its importance in applications is
usually replaced by Ui(x, y). For example m Crandall and
(2005)'s  monograph the convergence
calculation procedure of integer factorization by the

Pomerance

method of Lenstra elliptic curves was performed using the
function Ji(x, y), although J*(x, ¥) have to be used. This
introduces a certain error i calculations.

As Table 1 shows the function Ji(x, ¥) is growing much
faster. Furthermore, the functions Y(x, y) and *(x, y)
have a significant difference. Tt is the sequence of all
y-smooth numbers (with x limited on top) is infinite
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Table 1: Here are the values of the functions yi¢x, ¥) and y*(x, y) aty =25

x 107 107 10° 10°
YY) 275 1744 7856 28180
P, ) 204 780 1693 266
Y, DA ) 0.7418 04472 0.2152 0.0875

whereas the sequence of power smooth numbers is
finite. Let’s consider the function Y*(x, y) in more
detail.

POWER SMOOTH NUMBERS

Let p, = 2<p, = 3<...<p,< 18 the sequence of all prime
numbers. Let’s denote the following via k(p, y) function:

k(p, y) = min{teN:p'>y}

Its values may be obtamned according to the following
formula:

k(p, y) = [log,y]

where [u] 1s the rounding up. The amount of all power
smooth numbers we denote via *(y) and the mumber of
primes not exceeding y via w(y). Then any power-smooth
number looks as follows:

snly)
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where:
O=s <k(p,y).l<i=a(y)

Thus, when s; run through all its values, we get all
power-smooth numbers. The largest power-smooth

number looks as follows:

{mgmy) Y}

logy, ¥
[ ]x )

Pr

The values of the function Y*(y) may be obtamned
according to the following formula:

aly)

y*(y) =] [kp.y)

or:
(¥}

w(y) = [ [log,.v]

To calculate the values of the function *(x, v) at the
values of x which are much smaller than the greatest
power-smooth number the abovementioned formulae are
Inaccurate.
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Let’s consider the set of s(x, y) y-smooth numbers
not exceeding x and which are not y power-smooth
numbers. The number of elements for this set will be
denoted via #s(x, y).

Example:

S(100, 100 = {16, 32, 48, 64, 80, 96, 27, 54, 81, 25,
50,75, 100, 49, 98}

The example shows that if x<y’, then the set s(x, v)
consists of multiple degrees of p* for the primes p<y:

X
{—k}k =k(p,y)
pzy P

If x>v7, this formula must be adjusted as first of all not
all multiple elements p* will be smeoth ones and secondly,
the multiple products:

#s(xy) =2

k(p;.y)

ij

k(p;.y)

P

will be counted twice as the multiples p** and the
multiples p*” . Let’s consider this situation by an
example. Let x = 1000, y = 10. At p; = 2 the function
kip,, ) 4 and pfen 16. The relation
[x/p] = [1000/6] = 62, although, only 34 multiples of 62 will
be 10-smooth. Sumilarly forpe {3, 5, 7} such multiples form
the sets containing 25, 26 and 16 elements,
respectively.

While the intersections of these sets are not empty,
some elements appeared to be counted twice. All of these
elements have the following form:

P
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for p<p<y or are y-smooth multiples of such

products. In our example, the following products will
be double-counted:
16x27 = 432 and 2x16x27 = 864

16x25 = 400 and 2x16x25 = 800
16x49 = 784 and 25%27 = 675

The counting of such elements number is performed

Nk
i

according to the following formula:
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Thus, s#1000, 10) = 344+25+26+16-6 = 95. Now, we are
ready to put down a general formula for the calculation of
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where the number of non-zero terms does not exceed
[logx]-1 and the absolute values of the terms are
decreased rapidly, so the first term dominates all. Then,
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the function P*(x, y) may be found by the formula:

P, y) = Yix, y)-#5(x, y)

These arguments show a non-trivial problem of
calculating the function *(x, y), the number of power
smooth numbers. In order to obtamn an approximating
formula, this function is necessary to solve the problem of
the function k(p, v) approximation and perform an error
assessment.

CONCLUSION

The calculation of the function exact value for the set
of power smooth numbers *(x, y) at large values of x, y
is a very time consuming task. Now a days, this issue is
open and there are no satisfactory algorithms for its
calculation. The replacement of the function Y*(x, y) by
the function Yi(x, y) in the mathematical calculations is
performed correctly enough without the estimation of an
error occurring in this change. Therefore, the problem of
algorithm development for the approximate calculation of
the function Y*(x, y) while maintaining accurate the
asymptotic estimates 1s an umportant and an urgent task
which has no solution to date.
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