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Heterogeneous Stationary Nonlinear Filtration Problem with
Degeneration If a Point Source is Available
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Abstract: This study discusses a nonuniform stationary nonlinear filtering problem with degeneration at the
presence of a point source. The filtration law has a linear growth at mfinity and 1s monotonous one. The
pressure 1s considered to be known at the boundary. The solution to this problem exists and has an additive
representation with an explicit peculiarity in one summand, generated by the presence of a concentrated source.
A variation problem 1s formulated for a second term and the method of simple iteration is applied. The filtration
area proves the convergence of the iteration process at a geometric rate in the uniform norm and the value of
an optimal parameter is obtained. Then, we prove the Holder continuity of the second summand within the field

of filtration.
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INTRODUCTION

The research studied the iterative method for
mhomogeneous nonlinear stationary problem of filtration
of an mcompressible fluid m a limited domain at the
presence of a point source (Zadvornov and Zadvornova,
2014). The pressure was considered to be known one at
the boundary. The defining relation between the pressure
gradient and filtration rate was assumed to to be
depended on spatial coordinates which is strongly
monotone and which has a linear growth at infinity. The
existence of a solution for this problem was proved in
(Zadvornov, 2010) and the research (Zadvormov and
Zadvornova, 2014) proved the convergence of the
iteration method m a centinuous norm for any
subdomairn.

In this study, the problem of filtration with limiting
gradient was considered. The solution to this problem
(Zadvornova, 2012) and has an additive
representation with a particular determination of a

exists

peculiarity in one summand generated by the presence of
a concentrated source. As to the second (more regular)
term which belongs to the area neW, is formulated and
the methoed of simple iteration 1s used for its solution. The
mvestigation of iteration process convergence 1s carried
out by the methods described in the monographs
(Koshelev, 1986; Koshelev and Chelkak, 2000). The
Holder continuity of the second term 1s proved and the
convergence of the iteration process at the optimum value
of the parameter ata geometric rate in the norm of the

area C' where the filtering occurs. Note that at the other
conditions on determining law, the Holder contirmity of
the second term is set by Koshelev (1986), Koshelev and
Chelkak (2000), Zadvornov and Zadvornova (2012} and
Zadvomova (201 2).

PROBLEM SETTING

A boundary problem is studied describing the steady
process of incompressible fluid filtration in a porous
heterogeneous environment. The filtration occurs in the
area (QQcR", n=2 with Lipschitz continuous boundary 3£2
where the pressure 1s considered to be known if the point
intensity source q is considered available at the origin of
coordinates (let the coordinate origin 1s the internal point

)

div g (x, VW(X)‘)
Vwi(x)|

W(X) = Wy (X),

VW(X)J =g8(x),xe (D

x e 0 2)

We assume that for each 520, the function x-g(x, s),
describing the Filtration Law is measurable at  and is
represented as follows:

QO N
g(x,.5) -{ P RS 3)

S(X,8—8.), s =8,

There are the constants L> =0, p22, ky, C, £;>0 and
the function deL, ({2) such that the following inequalities
are performed:
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L(z-s)=g(x,z) - §(x,8)=p(z-5),z=5,7xcQ 4
At
B>MH—1
p
and:
xeB,_ :{XGR" Z|X|<Sn} —Q

‘g(x,s)—kns‘s C|X‘Bs+d(x)520 (5)

We believe that there 13 the function wew (@) with
a track, satisfying the equality:

(6)

W(x)=wy(X), xedl)

Under these assumptions, the boundary Eq. 1 and 2

has the solution (Zadvornov, 2010) in the sense that there
is the function we'W,"V (Q) with a trace which satisfies the

equality (Eq. 2) and the following variation equality is
performed for w:

J

=]

g(x, VW(X)D

[Vw(x)|
=qm(0), ¥ne Cr{)

Vi), Yix) o

It follows from (Zadvornov, 2010) that this decision
is represented as w = u+f where | & and the
function £ is the linear problem solution (k, is the constant

from (Eq. 5)):

ke, AG(x) = qd(x), x €Q,
E(x)=w,(x),x €00

(8)

ITERATIVE METHOD OF PROBLEM SOLUTION

Let’s start the solution of Eq. 1 and 2 with the
definition of the Eq. 8 solution. To this end, we solve a
linear boundary problem:

k,AE(x)= 0, x €, E(x) = W (x)
k;lqtb(x), x e 0

@)

Then, &) = &)+ k'ae(x) where the function $(x) is the
fundamental decision of Laplace operator:

00x) = —In([x]) n = 2;
27

o(x) = _71H, n=3
(n-2)s, ‘x

392

0, single sphere measure in R* Regarding the function

o

e W (Q) let’s put down the Eq. 7 in an equivalent form:

|
(10)

Q
And develop the sequence | _+,. (> T = 01,2,
(u, 18 set arbitrary) for its solution, using simple iteration
method (10 iteration parameter):

o D

ueW; (Q): GVicrw

dx=0V o0
(@)kﬁamﬁJ neG Y

I(Vuwvn(x))dx:j(vum,vn)

Q Q

dx -t j(G(x,Vum),vn) dx

[w]

(11)

Where the function :QxR"-R" is determined as
follows:
VE(XI+ A
|V§(x)+7u|

k,VE(x), x=Q, AeR"

Glx, )= g(x,

VEX)+ 7»‘)

ITERATIVE METHOD CONVERGENCE STUDY

Let s perform the study of the convergence process
(Eq. 11) followmg the methods outlined in Koshelev’s
monograph (Koshelev, 1986, Koshelev and Chelkak,
2000). The study of the examined iterative method n the
absence of a pomt source by other methods 15 performed
by Lyashko and Karchevsky (1975) and Gaewsky et al.
(1978). We can not use the results Koshelev (1986)
concerning  the approximation method
convergence for the Eq. 10 because the function G(x, A),
generally speaking, does not meet the conditions (1-3).
We have to use the following statements.

successive

Lemma 1: Let the function ueW,"” (Q), (p parameter from
the term (5)), then the function G(x, Vu(x)) belongs to the
area L, (Q).

Proof: According to Eq 5 and 9, the properties of Laplace
fundamental solution, it follows that the function £
satisfies the following terms:

Vex)|<

Hﬁ,XEBECQ,

C,»0;6e WY(QA\B))

C
x (12)

Using this mnequality and the inequality (Eq. 5), we
obtamn Aus R"uxus B,
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v
|G(x,3)|= b

I

Ve k|
Ve +4] "
‘g(x, )k, [V + x|\+ (13)
k, 2] < Clxf Ve + A+ dix)+ 1 u <
CC, g +d(x)+(C|X| +k )
¥

2 < d¢)+ (el + K, ) A

From the term (Eq. 3) to B, we have that p (1+B-n)>-n
thus, the function x-|x|"P* belongs to L.(k.) and
therefore, the function d = |x|"**+d from the area Ly (&) .

Using the condition (Eq. 4), we obtain the following
mequality for any A us R*and any x€Q/8,

G (x,1) S‘g(x )\+ku\vg(x)\ <

L|VEG)+ 4| +k, [VEE) = L|A|+ di(x)

Where the functiond = (L+)|VE|, due to (Eq. 12),
belongs to LIYR) .

Using the last mequality and (Eq. 13), we obtain the
following estimation:

|G (x, Vu(x))| < k| Vu(x)| + dix),
xeQ k= max{( s| +kn),L}

from which the lemma statement follows. The lemma is
proved.

Lemma 2: Let the function g satisfies the terms Eq. 3, 4.
Then the function g,(x, s)=s-Tg(x, s) satisfies the term of
Lipschitz continuity:

(14)
Yzz0, 828, +0,vVxell

Where:
5

s, +0

K, =max{l- gL -1}, f=p

Besides, K, at 12(0, 2\L) will belong to the interval
(0,1)and K, =infK, =L-[L+f 1s achieved at T, =2\L +fL

Proof: Let’s prove the following mequality for the
function g(s):

393

L|z—s‘ b ‘g(x,z)—g(x,s)| = }1‘2— s
Wz=0,8=8,+06,vYxeQ)

(15)

The left side of the inequality is obvious, let's prove
the right one. Let z=s. and from the term (Eq. 4)

g(X,Z)* g(X,S) = g(X327 S*) - g(X,S - S*) = I'L(Zi S)
Let z<s. from the term (Eq. 4) one may prove that:

g(x,z)—g(x8)=g(x,8—8.) = p.(s— S*) > [is

at fi=pd/s, +8 and the inequality (Eq. 13) is performed.
Let's consider the following difference:

= |z-s—t{g(x.0)-g(x.))

Suppose for defimteness z>s, then from (Eq. 15) and
the term ©>0, we obtain the following t(g(x,z)-g(x,s))>0.
Let’s consider the first case z-s>T(g(x,7)-g(x.s)) and use
the term (Eq. 15):

I=(z-s)-1(gx,2) —g(x,8))<
(z—s)-ti(z—s)=(1-T)(z—

(16)

Let’s denote K, =1-1i. Let’s consider the second
case z-3 <T(g(x,2)-g(x,8)) and use the condition (Eq. 15):

I:T( (x,7)— g(xs)) ( )S
w(z-s)(z-s)=(d-1)(z

LetK ,=tL-1 LetK, = max{K_ ,K_,;}. Then, itis clear
from (Eq. 16, 17) that we obtain (Eq. 14). Mimmum K, for
is achieved at t»=2'L+[ and equal toL —fA\L+[i. The
values K will belong to the interval (0, 1) at te(0, 2\1). The
lemma is proved.

Then let’s introduce the area w2 () with a finite

norm:
112
Q{i(Wuz + u2)|x - X, |OL dx}

(17)

Jul, = sup
HgE

And the function:

H{u,m;t)= j (Vu(x)— 1G{x, Vu(x)), Vn(x)jdx

25

where the area =0 is determined as £, = {x:[Vu(x)=>s.-0}.
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Lemma 3: Let the terms (Eq. 3-5), the functions u,ve W (), new? (Q) are performed for g function, then
for xe€dy = {x:[Vu(x)zs.+0} the following inequality takes place:
1z 1z
‘H(u,fr];'l:) - H(V,T];'I:)| <K, j Viu- V)|2 x - xumdx} ﬂ[ ‘Vnr x—x " dx} (18)
Where:
5
K. =max{l-ti;tL -1}, i=
c=max{l-ti;tL -1}, i Ms*+6
Proof: We have:
Vulx)— 1G(x, Vu(x ) — (Vv(x) - IG(X,VV(X))) =Vu(x)— rwvm +0)x)+ tk, Vo(x)—
V(u+ ¢)(x)|
x|V + ) [Vl 0)(x) - x|V + )(x)) B
[VV(X) T—‘V(V n ¢)(X)| Viv+o)x)+ 'ckUVd)(x)] = ‘V(u n ¢)(X)| V{u+0)x)
Vv 91601~ OV = 000D e, gy = .,V + 0360 G,V + 600
V(v + $)(x)
Here: Theorem 1: TLet the terms (Eq  3-6) and the
|s|ftg(x, sh g (xlsh iterationparameter T€ (0, 2/L) are performed for the
G.(x8)= 5= 5 function g, then the following inequality is performed

s s

Then, applying Lemma 1,2 at a fixed x from Q, we get:

|Gt(x,s) - Gt(x,z)| <K, |s - z|

Using this inequality for all x from £J, we obtain the
following inequality:

|[Vu(x) - 1G (x, Vu(x) - (V(x) - 16 (x, Vv(x))
G (6, VU +6)(x)) — G (x, V(v + 0)(x))| <
K, |[Vu(x) - V(x|

Using this inequality and Holder’s inequality, we
obtain the following:

Vu(x) - 1G(x, Vu(x)) -

|[H{wm,t)— H{v,n;7) < J (Vv(0)— 10, Voioy)| TS
K. Va0 w00 P <

25

172
KL|:IV(U—V)|2X—XDu&] |:J‘|Vn2|x—xn'°‘d)<l
Ly 23

12

The lemma 1s proved. The main results of this
research are the following statements.

394

within the area €} = {x:Vu(x)zs.d} for iteration

sequence:
Ju,, = v, < (R, Ju, —uf,,m=0.1.2,.,
Where:
2 _ 2 - o B . 5
[vli; = [Vl dx. K, = max {1 - tiieL - 1}, @ -

21

it 1s obvicus that 11;1;["141 =L-f@L+i 1s achieved at
T.=2 L +i.

Proof: In order to solve u the problem (Eq. 10) the
following equality is performed:

j(Vu(x),Vn(x)) = H{u,n;1)

25

Let subtract from this equality the equality (Eq. 11)
and we obtain the following:

[ (Vu60, VnGa) = [(Vug., (), Vnix)) =

25 25

H{u,m;t)- H(u,.n:t)

Let mn the previous equation 1 = u-uy,, and use
Lemma 3 for the right part at ¢ = 0, let’s determine:
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2<K

Hu_u s~ e

u—umHaHu—u m=0,1,2,. ..

m+1 m+l1||g?

And thus, we obtain the necessary inequality. The
theorem 1s proved.

Theorem 2: The conditions (Eq. 3-5) are performed for
the function g with the constant p>n and the constants
L and fi=pdws,+38, satisfying the following inequality:

A=(L-/(L+in@o-27/(n-D+1<1

Then there is such a small y>0 that the solution of the
problem (Eq. 10} in any internal subarea wc€), Holder’s
one with the value y. At T = 1. and the imtial
approximation:

g
u, € W;U((T))sz (Q), oo ool

the iteration process (Eq. 11) converges as a geometric
progression with the value A, = A+e (e = e(y) 13 arbitrarily
small forasufficiently small y)withinthe nonm of thearea W) (€2, )
where o = 2-n-2y (and consequently within the norm of
the area C"(w)).

Proof: Similar to the proof 3.1 (Koshelev, 1986),
demonstrating the peculiar moments in details. Tet’s
mtroduce the sequence of strictly nested areas so that
OCC--CCm, CC...CC M CC & Assuming that
u, e WP, ) and using the Lemma 1 (the term 3 1s
usedto prove the Theorem 3.1) (Koshelev, 1986), we
obtain that Vu_-tG(x,Vu,)cL (w, ) and then it follows from
(Eq. 11) that u,, e W0, As u, e WP (&), we have
u, e W) form =0, 1, 2, etc.

Further we choose a sufficiently small y=>0 (it 1s
possible due to the term p>n, see the proof of the Lemma
2.6 (Koshelev, 1986) that at o = 2-n-2v the inclusion
W () = W () 15 performed and thus v e W (o) for
m =0, 1, 2, etc. Let’s note w,, = u-u,, and put down the
difference of two sequential integral identities (Eq. 11):

(VW V() dx = [(Vw,,, V) dx -~ ©

[} [}

j(G(x,Vu)— G(x,Vu, ). Vn)dx

[}

Let's apply to the right side of the last equation the
Lemma 3 (in the proof of the Theorem 3.1 the Lemma 2.4 is
used (Koshelev, 1986) at ¢ = 2-n-2v and we obtain the
following inequality:

[(Vw,,, Vvidx < t_

[}

112
U|Vwm2|xxn|adx}
’ 172
{ J.szx—xurudx}

i
+

The further course of the proof coincides with the
proof of the Theorem 3.1 (Koshelev, 1986). We obtain the
following inequality:

Hu - umH <CA"

There 1s the norm m the space H, at the left part of the
inequality. From the inclusion of H, into C, the Holder
decision follows and the convergence of the iterative
process within the norm of the area C for any subdomain
. The theorem is proved.

CONCLUSION

Thus, in the field of filtration the Holder continuity of
additives at mhomogeneous nonlinear stationary filtration
problem with degeneration at the presence of a point
source is proved. Regarding the iterative process of this
problem, it 1s found out that the optimal value of the
parameter converges in a continuous norm.
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