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Abstract: The research studied the problem of a homogeneous layer refraction value recovering by Neural
Network Method. The case with the known thickness 1s studied. We used three neuron activation functions:
a linear, a sigmoidal and Gauss function. The network training 1s conducted by two methods: the method of
back propagation and genetic algorithm. The desired value of refraction index is chosen as the average one
between the results of independent neural networks trained according to the same imtial data. This approach
makes sense because the target functions of networks comprise the plurality of local extrema and each new
network with a random imitial vector of weights provides different but close results. The method of cross
validation estimarted the accuracy of refractive index recovery for different activation functions and the
methods of networlk training. The conclusion that the genetic algorithm provides better results than the gradient
methods (in particular, the method of error backpropagation). It was shown that the number of neurons increase
leads to a natural mmprovement of recoverable values accuracy for refractive index. The “best” objective
functions are obtained for neural networks with sigmoidal and Gaussian activation function. Tt is expressed by
more sustainable behavior of error at continuous change of other networl settings. The plots of error
dependence for the recovery of the refractive index on the sample size and the number of neurons are presented

which confirm the findings.
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INTRODUCTION
For the development of laminated coating
technologies and the testing of layers during

production as well as for a wide range of applications
encountered in optics and electrodynamics, the
restoration of the refractive indices of layered structures
15 often required. The restoration of one dimension
refractive index profile for a layer 1s an mnverse problem
and 1s one of the most important tasks within this field.
Finding of an unknown profile may be carried out on the
basis of various data such as the coefficients of the
reflected or transmitted field, an mput impedance, the
scattered electric or magnetic fields. During the
restoration a profile may be represented as a laminate one
or as a continuous one (Emad et al., 2009).

During the solution of profile reconstruction 1ssues
two approaches are used: the methods n the time domain
(Li and L1, 2008; Rahman and Marklein, 2009) and the
methods in the frequency domain. The methods in the
time domain require a rather complex and high-precision
equipment for the generation and the registration of short
pulses which complicates the use of these methods in
practice. Often the terahertz pulsed spectroscopy is used

(Zaytsev et al., 2013, 2014). The methods in the frequency
domain determine the required measurement parameters at
different frequencies and at multiple angles of incidence
and different polarization of waves. The dielectric
permeability (or the refractive index) 1s approximated by
truncated series or presented as a set of individual values
(Sermmnani and Kamyab, 2009; Pleshchinskii and Tumakov,
2012).

The resulting inverse problems during profile
reconstruction are ill-conditioned and their solutions
demand the methods of regularization. These methods
provide a stable but they affect the accuracy. The error of
methods in the frequency domain depends on the choice
of a frequency band used i the inverse problem of
Pleshchinskii and Tumakov (2013) and Tumakov (2014).
However, the precise criteria for the selection of the
frequency range are not always easily predictable
(Lin et al., 2011). Any a priori mnformation 1s important for
inverse problems solution. Such information may be
obtained for example, during the analysis of the
amplitude-frequency characteristics. For example, the
passage of the waves through the gradient layers of
certain types (Anufrieva et al., 2013), the fractal layers
(Anufrieva et al, 2014) or stratified geologic
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environments (Kipot and Tumakov, 2014). Tt is also
necessary to bear in mind that sometimes certain
measured values at different frequencies are the same for
different layers (Anufrieva and Tumakov, 2012).

Among the methods of solutions one may distinguish
analytical approximation techniques (Ahmad et of., 2006;
Casagranda ef al., 2006; Mertzanides ef al., 2000) and the
methods of consistent effect removing of the overlying
layers (layer stripping techniques) (Hashish, 2003;
Caviglia and Morro, 2007). Most often, the issues of
profile restoration are solved by optimization techniques
which mimmize the error between the measured and
calculated data. Also, the problems arise when the data
are incomplete or corrupted by noise (Nakhkash et al.,
1999),

The used methods may be divided into the methods
of local and global optimization. For example, the methods
of local optimization are the gradient and quasi-Newton
methods well as the Gauss-Newton Method
(Abubakar et al., 2006, Haber et al., 2007). These
methods are fast but often converge to local minima
caused by the non-linear nature of a problem. Therefore,
these approaches may be recommended when a prior

as

mformation is known. A priori mformation is not needed
for global optimization methods but they require a large
number of iterations.

From the global optimization methods used in inverse
problems of electrodynamics, we may distinguish the
method of neural networks (Brovko et al., 2008), the
genetic algorithms (Caorsi et al., 2001; Chiu and Chen,
2000) and the particle swarm optimization techniques
(Donelli et al, 2009, Huang and Mohan, 2005,
Huang et al., 2008; Emad and Hashish, 2007). Each of
these methods has both the advantages and
disadvantages of (Van Den Bergh and Engelbrecht, 20086;
Samnii, 2003; Eberhart and Shi, 1998). Because of this,
sometimes we use different methods of hybrid technology
to take advantage of each of the methods by Wei et al.
(2007) and Franceschini et al. (2006).

In the present research to restore the profile the
method of neural networks was used. Tt is worth noting
that now a days newral networks are proven to be a
powerful and an effective tool for complex process
modeling in many areas of science (Haylkin, 2009). On the
basis of functioning and the principle of biological neural
network operation one may recreate an artificial neuron
model with a hardware and a software implementation.
Artificial Neural Networks (ANN) are gaming popularity
due to the relative simplicity of the structure and the
possibility to adapt to the specific range of tasks. Tt is
worth to take mto account ANN applicability 1s
determined, primarily from the context of the set task.
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ANN  training is rather complicated and
time-consuming process. There are many different
learming algorithms which have thewr pros and cons
(Schmidhuber, 2015). Among the algorithms the
backpropagation method may be mentioned primarily
which is the gradient method and accordingly is well
suited for the tasks with a distinct global extremum. For
the class of problems with the plurality of local extrema,
the global optimization such as genetic algorithm are more
preferred ones.

In this research, ANN traming 1s conducted by two
methods: the method of error back propagation and
genetic algorithm. The conclusion of unfitness to this
class of problems of a error backpropagation method in
particular and the gradient methods in general.

The errors of the desired refractive index for a
layer are estimated for three activation functions:
piecewise-linear, sigmoidal and Gauss function. Tt was
concluded that the slightly better results are provided by
ANN with Gaussian activation function. There numerous
plots of neural network error dependence on the number
of training data are presented.

PROBLEM SET

Let a plane harmonic electromagnetic wave
u, (x, )= A, exp{-ik,n x+iot} falls on a uniform layer with
thickness L and an unknown refractive index n, (Fig. 1).
Here A, is the wave amplitude, k; is the vacuum wave
number, 1, the refractive index of the first medium, w is the
frequency of the wave distribution. In the urknown
functions, let’s move from the variable t to w, so all
functions will depend on the variables x and w. The value
shall be restored n, using the known elements of reflected
wave 1,(x, 0) and passed wave u,(x, w), measured at a
fixed frequency .

The problem will be solved by the method of neural
networks. Tt is necessary to consider two methods of

network traimning: the method of backpropagation and the
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genetic algorithm using the three most common activation
functions: a piecewise-linear, a sigmoidal and a radial
(Gaussian function) one.

NEURAL NETWORKS

Each neuron is a unit that receives a signal from a
previous layer and transmits a signal to the next one. The
function calculating the output signal of an artificial
neuron is called activation function. As an argument, the
function takes the signal obtained at the output of a
so-called adder which represents the sum of weight
products and the values of input neurons. The weights
may be considered as some channels that characterize the
strength of the link between neurons and simulating the
work of biological synapses. Thus, the ANN may be
represented as a set of simple elements, the neurons
performing the processing of input data followed by the
issuance of the resulting value. The block diagram of a
two-layer ANN 13 shown by Fig. 2.

The most widely used activation functions are the
linear, sigmoid and radial one as well as some modified
versions of these functions. The comrectly chosen
activation function in conjunction with the learning
algorithm greatly improves the convergence of a neural
network. Therefore, on the basis of the experumnents
performed, it is necessary to choose the best option for a
particular task solution. The output neuron signal with a
linear activation function 1s equal to the combined mput,
i.e., the output of the adder:

N
8= 2wy,
1=0

Where:

w,; = The neuron network weights

%, = The inputs in the ith neuron of the current layer
Here, w,, the threshold value, x, = 1. Piecewise linear

functions (Fig. 3) are used most commonly:

1 8=1/a,
f{Sy=<a% 0<S5=1/a,
0 S8S<0

The derivative of a linear function is equal to the
slope line ratio:

0 S=1/a,
f'{8y=<a 0=38<1/a,
0 8<0

The piecewise linear functions are the ones of the
easiest activation fimctions and are easily implemented in
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Fig. 2. A two-layer model of an artificial neural network
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Fig. 3: Piecewise linear activation function (¢ = 0.8) and
its derivative

practice. However, these functions have a significant
drawbaclk their derivative has a discontinuity and the
gradient methods can not be used to train ANN of this
type.

The unipolar sigmoid activation function varies in the
range from 0-1 (Fig. 4) and is described by the following
formula:

1

1+e¢

£(S) =

—od

The distinguishing feature of a sigmoid function is its
monotony and differentiability on the whole definitional
domain as well as a simple expression of its derivative:

£(8) = af(S)[1 - £(S)]

which may be used in the gradient traimng algorithms. A
separate ANN class includes the network of radial basis
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Fig. 4 Sigmoid activation function (e = 0.8) and its
derivative

-0.51

-1.01

Fig. 5: Gaussian activation function and its derivative

functions that use radial basis functions as activation
functions. This function may be a Gaussian function
(Fig. 5):

52

f(S)=e &

where the parameter 0 1s a material number. The Gaussian
function derivative is expressed by the formula:

P8y =22 8(s)
g

and also has a simple representation as well as the
derivative of sigmoid function. Having defined a neural
network structure one should find the wvalues of the

weights w, and thethresholds w;, to minimize the error at
the output of a neural network. To solve this problem
the traiming algorithms are used. Let’s consider some of
them.

The most famous teaching method 15 the error
backpropagation (backpropagation algorithm). The basis
of this algorithm is the method that computes the gradient
vector for further process of weight refinement. The
vector direction corresponds to the shortest descent on
the error surface. The local mimma and the choice of step
length have certain difficulties. The differentiability of
activation function determines the possibility of using the
method of back-propagation. This method involves the
traming with a “teacher”, 1e., the leaming sample on
which the network will be trained, it contains the input
data and the desired response to them which may be
represented as the vectors X = x,,...x, and D = d,,....d,,
respectively. By comparing the actual and target (desired)
values the error of learning is calculated on the basis of
which based ANN efficiency as a whole is estimated.
From these differences the error vector E = e,...e, 1s
generated, the size of which coincides with the dimension
of the vector output signals Y = v,,....y..

At each step of learning the jth weight of the ith
neuron 1s specified by the Delta rule which may be written
as follows:

w1+ 1) = w, (D +nex,

The signal number j varies from one to the
dimension of an input vector m. The newron number
varies from one to the number of newrons. The magnitude
t the number of the current practice iteration, 1) the speed
of network practice. The input neuron weight error
number decreases proportional to the total neuron
error.

The use of a sigmoidal activation function has
allowed to extend the range of tasks and operate with
continuous signals but required the modification of the
learning algorithm. The amended version is aimed at
minimizing the mean square error function:

5= 1 =3~y @
2 1=1 2 1=1

This function is defined by the matrix of weight ratios
w,, where 1 1s the neuron number and j 1s the input number
into 1th neuron. The ultimate goal of practice 1s the
obtaining of the global minimum 8. Tn order to implement
this task, vou may use the method of gradient descent
followed by the adjustment of weights m the direction of
a surface antigradient:
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Let’s calculate the partial derivatives and we obtain
the following:
Aw, =mn(d, -y (3%,

Note that when you use the Delta rule the activation
function must be continuously differentiable withun the
entire domain.

Now let’s consider the method of global optimization
the genetic algorithm. The genetic algorithm is the method
that reflects the natural evolution of the desired solution.
Tt uses an evolutionary principle of swvival for the most
suitable species. The optimization occurs by crossover
and the mutation of chromosomes W = {w;} of this
population. The chromosome W 1s represented by a series
of genes w; which may be encoded as a vector (of a
“genotype”). Tt is assumed that a genotype has a fixed
length. Let’s note that there are variants of the algorithm,
free from this limitation During the first iteration a
plurality of initial population genotypes is generated
randomly. The fitness function & helps to assess the level
of fitness for each mdividual and to create a new
population of individuals on this basis. From the resulting
set of solutions called generations, the best individuals
are selected based on the value of fitness which again
experience the crossover and mutation operations. The
descendants should be able to inherit the attributes of
both parents.

“Mixing” can be done in different ways. Let’s
consider the way of crossing in which another gene 1s
chosen randomly with an equal probability from ancestral
genes located m the same position. Then the genes of a
constructed” chromosome are unlikely mutated by a small
amount. The generation of new populations occurs as
long as the fitness function 1s optimized. Thus, the
sequence of these iterations may imitate an “evolutionary
process”.

LAYER REFRACTIVE INDEX RECOVERY

Let’s consider the case where the layer thickness 1. is
known We assume that measurements of the electric and
magnetic fields are performed on both sides of the layer.
The measurement results may be represented by two
complex variables u, (0) and u; (I.). Thus, the projected
neural network will comprise four neurons at the input
(Re[w, ()], Im[u,(0)]. Re[u(L)] and lm[u ¢L)]) and one
output neuron (n,).

As the result of numerical experiments during ANN
training with the sample contaiming M experiments, we
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may conclude that the mean square error & has many local
extrema and the backpropagation method will stay in
these local minima. Tt is obvious that the other gradient
methods based on local optimization will behave m a
similar way.

So, we abandon the gradient methods and will train
the networlks by a genetic method. At each ANN training,
we get a full set of predetermined weights W = {w,}. At
that due to the arbitrary starting values W™ as well as the
variability of weight W mutations at each traimng the
weights W will be different. The restoration of the value
n, will also be varied within some mterval. Let’s assume
that the values n, calculated by the newal network
approximately satisfies the normal law. Then this will allow
to use the following approach. For the same experiments
let’s carry out the training of the network K tumes, thus
obtaining de facto K of independent ANN. Then let’s
calculate the following outputs for each network: n,
i=1..K. The final value will be obtained as the average
one:

Let’s choose K =5 for numerical experiments. Tn order
to check the accuracy of the approximation method let’s
use the cross validation method. Let’s use the following
modification of the method. Suppose we have M of
experiments. Let’s choose a single experiment randomly,
train the network on the remaming M-1 data. Compare the
obtained n, with the known values obtaining the
approximation error €. Let’s perform R of experiments, the
result will be the sequence €,,....&;. Let’s choose the worst
value € = mae. Let R = 20, then we can say with the
confidence of 95% that the neural network “works™ with
an error €. Let’s assume that R = 20 for all numerical
experiments.

Let’s restore the refractive index with a network
containing one neuron in a hidden layer. Figure 6 shows
the error dependence € on the number of samples M. It
can be seen that the error is quite but more stable and
somewhat lower values € will be for the Gauss function
activation (dotted line). Tt should be that at larger M an
error instability occurs, conditioned by a retraining.

The following experiments were conducted for the
ANN with three and seven neurons in a single hidden
layer (Fig. 7). Obviously, the accuracy improves with the
number of newrons mcrease (and accordingly, the number
of weights increase). In these cases, it is difficult to single
out any activation function. The example of ANN with
seven neurcns shows that the network works better at
low values and starting from M = 35, £ values begn to
increase, especially this effect is visible for a
piecewise-linear activation function (solid line).
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Fig. 6: The dependence of &€ on M. ANN: 1 hidden layer

with 1 neuron Solid line piecewise linear
function,  dashed-sigmoid, spot
Gaussian function

activation

— Piecewise linear activation function
—— Sigmoid function
- Gaussian function

Fig. 7. Dependence of € on M. ANN: 1 hidden layer
with 3 neurons (to the left), 1 hidden layer
with 7 neurons (to the right). Solid line piecewise
linear activation function, dashed line sigmoid,
spot Gaussian function

The confirmation that the number of neurons
umproves the accuracy can be seen by Fig. 8a. The figures
demonstrate the graphs for one neuron (solid line), the
dotted line for three neurons and the dotted one for seven
neurons. You may also notice that the radial activation
function (right figure) provides a more stable accuracy
than a sigmoid one (Fig. 8b).

Figure 9 shows the dependence of € on the number of
neurons N of a neuron network with one hidden layer. It
can be seen that for sufficiently large values N>12, the
error values € at the increase of N become better and more
stable at £20.04.

Let’s consider the restoration of the layer refractive
index by the field passed. In this case, the neural network
will comprise two inputs Re[u,(L)], Im[u(T.)] and one
output n,. The restoration will be performed on a
multilayer network with sigmoid (solid line on Fig. 10) and
radial activation functions (dashed line on Fig. 10).
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Fig. 8 Dependence of £ on M; a) ANN with 1 hidden
layer. Sigmoid activation function; b) Gauss
function activation. Selid line 1 neuron, dashed

line 3 neurons, dotted line 7 neurons
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Fig. 9: The dependence of & on the number of neurons N.
ANN with one hidden layer. Solid line piecewise
linear activation function, dashed line sigmoid
function, dotted line Gaussian function

The recovery results by a two-layer and a three-layer
ANN can be considered as close ones. Note that the
network consisting of two lidden layers of neurons
containing 5 neurons each has only 10 lndden neurons
and 40 weights plus 11 thresholds (51 gene in the
chromosome). The network, comprising 3 layers with 3
neurons each contamns 9 and 27 weights plus 10
thresholds (37 genes). The learmng process using a
genetic algorithm, depends primarily on the nmumber of
weights. Tt is possible to make a preliminary that the use
of multi-layer networks may be preferable from the
learning time point of view.
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@
— Sigmoid activation
—— Gauss activation

Fig. 10: The dependence of £ on M. The recovery by
elapsed field. ANN: 3 hidden layers with
3 newrons in each (to the left), 2 hidden layers
with 5 neurons m each (to the right). The solid
line 1s the sigmoid activation function, the dotted
line is the Gauss function

SUMMARY

The use of neural network method to restore the
refractive index of a homogeneous layer gives quite good
results. The use of genetic algorithm for a single-layer
neural network training (the number of neurons 1s >12),
guarantees the recovery of the refractive index
with an error of <10%. The number of neurons
increase leads to the improved accuracy of the network
operation.

CONCLUSION

The traimng of a neural network to restore the
refractive index of a homogeneous layer is reasonable to
cary out using a genetic algorithm. This conclusion
follows from the fact that the objective function (network
error) comprises a plurality of local extrema.

The second conclusion is quite obvious that the
nmumber of neurons increase improves the approximation
of the desired values and the network performance with
the mcrease of its structure complexity (increase of
neurons) becomes a more stable one.

The third conclusion regarding the activation
functions shows that all functions considered m the
research (linear, sigmoid and Gaussian function) are

425

approximately the same and approximate the desired
refractive values. But ANN, giving more stable solutions
are obtained using a Gaussian fumction activation.
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