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Abstract: One-dimensional geometrically nonlinear problem of stability loss mixed forms for outer layers of a
sandwich plate composed of two carrier layers and disposed there between transversely with a soft filler related
to carrier layers with adhesive bonding at face axial compression of one outer layer among other outer ones.
We assume that the edges of the plate carrier layers are hinged. The problem is described by the system of
nonlinear differential equations. Using the method of summation identities the finite-difference problem
approximations were developed. In order to solve the difference scheme a two-layer iterative process was used
with the lowering of non-linearity to the lower layer. The central place 1s occupied by the determination of
critical bifurcation points and respective critical loads. The bifurcation points are determined as the points of
branching for the problem solution. These points may be found by the linearization of nonlinear equations in
some area of solution. At that the need to address a non-linear (quadratic) eigenvalue problem on eigen values
appears. The set of programs was developed in Matlab for the numerical realization of the proposed iterative
method. The numerical experiments were performed for the model problem. An optimal iteration parameter (by
the mumber of iterations) 1s selected empirically. In order to solve polynomial (quadratic) issue on eigenvalues
the Matlab medium was used. As the result of numerical experiments, the dependence of end load on the
deflection at the central point of the carrier layer was developed. The behavior of the plate near the critical point
which is the bifurcation point is studied. The critical loads are determined. Tt is established that the result of a
geometrically nonlinear problem solution by tabulating according to kinematic loading parameter as well as the
linearized problem i the area of a nonlinear problem solution have almost identical values of the critical load.
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INTRODUCTION

In this study we consider the problem of the
stress-strain state determination for a sandwich plate
with transversal-soft filler (Fig. 1). The kinematic relations
for the filler are produced by successive integration over
the transverse coordinate of initial three-dimensional
equations of elasticity theory (Paimushin and Bobrov,
2000, Paimushin, 1987, 1999) previously simplified by the
mtroduction of the assumption about the equality to zero
of the tangential stress components (Paimushin, 2007;
Berezhnoi and Paimushin, 201 1; Badriev et al., 2015). Tt is
believed that the edges of the second plate carrier layers
are pivotally secured and the end load makes an impact on
the first layer.

The finite-difference approximation of the problem is
developed for the approximate solution. The numerical
solution is carried out using a two-layer iteration
method (Badriev and Banderov, 2014a, b) with a
preconditioner which 1s a linear part of the developed
difference scheme operator.
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Fig. 1: Sandwich plate with transversal-soft filler

On the basis of the developed set of programs in Matlab
the numernical experiments for the model problem are
performed. By the tabulation according to the parameter

Corresponding Author: Tldar B. Badriev, Kazan (Volga Region) Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia



Res. J. Applied Sci., 10 (8): 428-435, 2015

of the kinematic load the load behavior and the deflection
in the central part of the first carrying layer was
monitored. The critical load 15 determined after the
passage of which the deflections at the center point
continued to expand at the decreasing wvalues of the
external load. TLet's note that various geometric
(Sagdatullin and Berezhnoi, 2014; Berezhnoi et al., 2014,
Sultanov and Davydov, 2014) and physical (Sultanov,
2014; Badriev et al., 2014) setting of non-linear problems
in the theory of shells were considered, including the
cases of final deformations (Badriev, 2013; Badriev and
Shagidullin, 1995, Badriev ef al., 2001) as well as the
approximate methods of their solution (Badriev and
Karchevskii, 1994; Badriev and Zadvornov, 2003; Badriev
et al., 2013). The nonlinear 1ssues on eigen values were
considered by Zheltukhin e al. (2014).

MATERIALS AND METHODS

Problem statement: The problem of stress-strain state
determination for a sandwich plate is considered with the
transversal-soft filler. The problem of a sandwich plate
equilibrium with transversal-soft filler in one-dimensional
geometrically nonlinear formulation i1s described by the
following system of differential equations:

ATy /dx + X, +q' =0, dT/dx+
Xy 4 =00<x<a,
dsy, / dx+ e (W —w)+ X2 =0, dS), fdx—
cj(w(2)7w(1))+){?2):0,0<x<a, )
o —u®-H dlm—H dLm-s—
0 dx (2) dx
1 3 q2.1
4 gy A d % 0,0<x<a
G, 3E,
Where
a = The plate length
Zhand 2hy, = The filler and base layer thickness
"y Membrane efforts
X'y and X°y = The surface load components, brought
to the median surface
w¥ andu® = Deflections and axial displacements of
the middle surface points
S'e = Qeneralized cutting forces
Giand E; = The modules of transverse shear and a
filler compression
q' Stress tangents in the filler

Where (let’s assume that k =1, 2, (k) index denotes
values, related to k layer) Hy, = hy, + h.
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(k) =dM (k)

1 1
{dx + T(k) ' 4 M(k) + H(k)q s

Ty, = B (du/dx + 5((0&))2 )

Where:

0¥ =dw®/dx = The angles of normal rotation to the
middle surface ¢, = E,/(Zh)

My =Dy

dwB/idx’ = The internal bending moments

My, = Surface moment of the external forces
brought to the middle surface

By, = 2hy, E¥/

(1-v® v® ) Stiffness in tension and compression

E® = The elasticity module of the first kind

Dy, = By 1’e/3 = The flexural stiffness

v, vy, = DPoisson’s ratios of the material

We assume that the edges of the plate carrying layers
are hinged, so Eq. 1 are supplemented by boundary
conditions (atx =0, x=a, k=1, 2):

du® 1
B )
m[ o 2( ) j
du® 1 2
B + (0@ |= (2)
(2)[ x 2( )J
2, (k)
W = d W2 0, dq
dx dx

where, p 1s the end load. It should be noted that the
boundary conditions formulated for q' (Eq. 2) correspond
to the presence on the edges x = 0, x = a diaphragms.

Difference scheme: In order to solve the problem
(Eq. 1, 2) the dual layer iterative process proposed by
Badriev ef al (2014) 1s used with the lowering of
nonlinearity to the lower layer. However, tlis analysis
provides information only about the possible stable
equilibrium positions. One should find hifurcation
points which lead to the need of finding the
approximate, sunplified ways of the system behavior
study (Paimushin and Bobrov, 2000) under the action of
the load applied thereto in order to search the unstable
equilibrium positions. For the preliminary approximate
solution of the task by the method of summation identities
(Karchevsky and Lyashko, 1976; Samarsky and Andreev,
1976, Wemberg, 1972), its fimite difference approximations
were developed. To this end, we introduce uniform grids
on the interval [0, a] with the step:

h,=a/N:®d= {X i=12,.. . .N-1,
o=i{x, 2.....N},
o=i{x, 0,....N+1}
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Let’s note that:
v, =(v,, —v,)/h, ={v,-v_)/h, V,, ={v,,—v,_ )/ (2h)

-1

Then, the difference scheme 1s written as follows (for difference functions we leave the same notations as for
the differential cnes w® are determined on ® the functions u®, q' are determined on w):

Dy Wotgy + B (0P + HWIwWE), .+ Hyqh  + (3 2K)

()" Tx®x,i

o (Wi —wi M + X =0, i=12,..N-1 k=12,

By, (¥ + 1w Hwhh,  +(3-2kig, + X =0,i=12,.. ,N-1k=12,

2h 2h’
wh g - g, =0, =12, N-1

@ (1) (1)
u Hy, -H
{ i )= @V G,y g; AE, sy

The boundary conditions (Eq. 2) are approximated in the following way:

(k)

%0

w¥ =0, w¥ =0, wF=0wl =0, B(l)((u(” +HwP) = —p, B(z)((u(z) +iwP=0,q%,=0,q;,=0

=, M

Let’s denote:

U = (W w? u®, u?, gh

Vi = The set of difference functions z, determined on & such that z, = 0,2, =0, z, =0, 2, =0, w ;=0
V. = The set of difference functions 1), determined on w, V, =V, %V XV, x VWV xV

Let’s consider the difference operators A :v, >V, A7V, >V, k=12 A :V, >V, j=12 according to the
formulae:

APUX)=B,ul) +(3-2k)q, k=12,x€b
A% =-D, w¥ + (-2, (WP -w) k=12, xe®
i o Wezzx (k)q B 5y N

@ 2h . 2h' ;
W +—q ——q§X,XE(:),

2
A UG =~ —u) - Hyw - How G 3E
13 3

(k)U(X) = (k)((u(k) %(W%))Z) W(?I:))xi k=12xe &):

APUK) =— 1By, (w8, k=12, xed A, Ux)=0, xc,
and the function:

= (Y f0 f0 FO f) eV, fod = Mghs + X0, £ = - XD, k=121, —0one,f = p

tw oy T w ? b tw >y >Tu,0

Let’s note that A¥, A¥ A, are the linear operators, A%,,, A%, are the non-linear ones. Then the difference
scheme may be put down as follows:

AU=(A +A)U=F, A, =(AY AD AQ AW A ), j=12 (3)

jwrttjwrtt jus it jus

Tabulating by kinematic load: Tn order to solve the difference scheme Eq. 3, the following two-layer iterative process
was used with the lowering of nonlinearity to the bottom layer (Badriev et al., 2014):

A (UY Uy 4 (A +ANUM =F )
Where:
U® = The set mitial approximation
>0 = An iteration parameter
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It should be noted that during the tabulation
along the transverse load p, set m the boundary
condition Eq. 2, the iteration process stops to converge at
some large value of the load. So, instead of thus
condition the following boundary  conditions
correspondimng to the kinematic loading were introduced:
u0) = U, ua)=-1,

Setting of a problem on eigen values: In this study, the
central place 1s occupied by the determmation of critical
bifurcation points and the corresponding critical loads.
The bifurcation pomts are defined as the points of the
problem solution branching (Eq. 1, 2). These points may
be found by the linearization of the nonlinear equations in
some area of solutions.

The basic idea of bifurcation point determination via
homogeneous linearized equations 1s as follows. Suppose
that one some form of the system equilibrium is known
(in fact, this form was considered by Badriev et al (2015))

, 10 (8): 428-435, 2015

form of equilibrium. To do this, it’s enough without being
interested in the behavior of the system away from the
well-known form of equilibrium:

U= (%0, wo, dn do,q1)

and find the terms of another form existence U+AU,
differing from the initial one but infinitely close to it:
A(U+AU) =F, 1e., the pomt, the area of which has such a
balance form will be a bifurcation point where
AU=(w" w? u™ u® g") is a small increment. Let B is the
operator A Frechet derivative, i.e. (Weinberg, 1972)
A(U+AL) = AUHB(UNAUHR(U+AL) where the remaining
member R(U, AU—0 at AU—0. Then AU+ B{IHAU-F—0
at AU—0. Therefore for small AU we obtain that:

B(U)AU % 0 (5)

The system of Eq. 5 15 the following one for the

and 1t 1s necessary to find the bifurcation point for thus considered problem:
dw®  dw® dw® o d'w® AW | du®  dw® dw®
Dy ———- - tlw —3 7 P +
dx dx 1 dx dx dx dx dx  dx
d
#Hy, ot G- o -w) =0, k=12
du® W™ dw®  dw™ d'w®
I3 d}{_z dx2 x Ix dx_z + (3 — 2k)q1 =0, k= 1, 2;
- u®)—H dw” dw 4y W E
O gx @ G 3E, dx’
et’s consider the following auxili roblem J =0,U= Or:
Let’ der the following liary problem B(AUNAU =0, U =U/p
(LOUY+ AD(0) + AP (U)NAU = 0 (&)
which 1s the task for its own values. Here, the same designations are introduced for L, @, ¥ as for F at that:
~ At 1
L' (0)AU = -Dy,, —d:4 +H,, %+ (3-2Kje,(w? —w?), k=12
dzu(k)
LEPAU = B, w7 (3-2k)q', k=12
(1 (2) 1 3 42,1
LYAU =@ —u®) - H, w @ dw + 4o hd qz
dx d< G, 3R dx 7
~ dﬁf(k) dw(k) ~ dzw(k) dZ\TV(k) du(k)
D (AU = k-2 g +T! , k=12,
w (U) o 1 6G-2g © o ol &
~ 2 K) 30 ) g () 42 (k) ~
O®(THAU = dd‘zz d‘s; d‘g’x dd‘zz LOPMIAU=0, k=12
d7w® dw® dw®

‘{Jg‘)(ﬁ)AU:BG{)? po—

MHPOAUL k=12, (U)AU = 0a
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RESULTS AND DISCUSSION

Numerical solution of geometrically non-linear problem
by tabulation via kinematic load: A set of programs was
developed in Matlab environment for the numerical
implementation of the iterative method (Eq. 4). The
numerical experiments were performed for the model
problem. The iterative parameter was selected empirically.
The calculations were performed for the following
characteristics: a =1 c¢m, h; =h, = 0.005 ¢cm, h = 0.05 cm,
G, = 15 MPa, E; = 25 MPa, X', = 0.0319 MPa,
X, = 0. E¥ = 7.10° Mpa, v¥,,, v¥, = 03, X'y, = 0,
MY, = 0, k = 1, 2. The number of grid points makes
N = 100. The initial approximation U™ was set as a zero
one. The calculations according to Eq. 4 were performed
till the standard of misalignment |F-(A, + A, UY|
remained greater than the determined accuracy £ =5.107",
The tabulation of kinematic load, starting with 1, = 107",
monitored the load behavior p = -By,, = (du'/dx + (0")%/2)
and the deflections in the central part of the first bearing
layer. Figure 2 shows the dependence of the load p on
deflection in the central part of the first layer w™.

Figure 2 shows that the end load begins to decrease
with the deflection mcrease, mdicating the critical load,
which corresponds to p, = 16.65 MPa. Figure 3-6 show the
behavior of the plate near the critical point which is the
bifurcation point.

Numerical solution of quadratic spectral problem: To
solve the polynomial (quadratic) eigenvalue problem
Eq. 7, the Matlab medium was used (the integrated
function polyieg). Due to Eq. 6 B(ADAU = 0, ie, it is
necessary to obtain such an end load value p* that the
value of eigen number will be equal to the end load
A = p*. In fact a critical end load applied to the first
bearing layer and equal to p 16.6535 MPa was
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Fig. 2: The dependence of the end load p on deflection
w' at the center point
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determined. The results of numerical experiments are
shown by the Fig. 7-10. Figure 7-9 demonstrate the graphs
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of eigen functions for a quadratic eigenvalue problem
Eq. 7. The behavior of their own values was also analyzed
at different load values on Fig. 10. The dependence of the
eigenvalue was demonstrated from the applied end load.
A more detailed graph fragment after a sharp fall is
depicted by Fig. 11. Figure 12 shows the inverse function
to the function of Fig. 11. Tt is easily seen that at the load
equal to p,:= 16.6335, the eigenvalue makes A = 16.6535.
Let’s note that solving a geometrically nonlinear problem
(tabulating it by kinematic load) and a linearized problem
in a non-linear area (the quadratic problem on eigenvalue),
we obtained approximately the same load values at the
bifurcation point (p, = 16.6535 MPa, py;: = 16.6535 MPa).

SUMMARY

One of the main methods for three-layer structural
elements production is a bonded joint of external
carrier layers with filler which may often be
accompanied by the appearance of technological
defects on the mating surface layers in the form of
disbonded places. The study of deformation processes
for such elements is primarily dictated by the need to
determine their suitability for further use. In this study, we
consider the problem of determining the stress-strained
state of a sandwich plate with a transversal-soft filler.
Therefore, the methods proposed in this study are
relevant both from a theoretical pomt of view and n terms
of possible applications.

CONCLUSION

The methods proposed in this paper concerning the
determination of loss forms can be widely used m the
design of structures made of laminated plates. The
obtamed results show the effectiveness of the proposed
methods.
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