Research Journal of Applied Sciences 10 (8): 442-446, 2015
ISSN: 1815-932X
© Medwell Journals, 2015

Comparative Analysis of Module Reduction Calculation Algorithms

Dmitriy A. Dolgov
Kazan Federal University, Kremlevskaya Street 18, Kazan, Russia

Abstract: The most popular tasks in cryptography are information encryption‘decryption tasks, the calculation
of a digital signature, the calculation of the greatest common divisor for several numbers, the creation of safe
(cryptographically resistant) data transmission protocols and so on. The protocols use the asymmetric
cryptography for keys authentication, the symmetric encryption for confidentiality preservation, the message
authentication codes to ensure the message mtegrity. But at the same time with the increase of local network
capacity as well as internet traffic, the role of cryptographic protocol performance increases. Many
cryptographic algorithms are performed over a field, so the acceleration of the basic arithmetic operations
umplementation (addition, multiplication, exponential calculation) will speed up the inplementation of the whole
algorithm. This study describes the effective versions of multiplication, exponent calculation and modular
reduction algorithms for a wide range of cryptography issues. The detailed description of these algorithms is
provided, combmed with mathematical transformations necessary for their analysis, the field of their use 1s
described, their comparative analysis is performed on the basis of which we may obtain for example, a more
efficient version of asymmetric cryptography algorithms such as RSA, El Gamal and others and thus develop
some faster protocols.

Key words: Modular reduction, module, montgomery reduction, the reduction of Barrett, table modular
reduction, public key cryptography

INTRODUCTION

The public key cryptography is closely related to the
concept of one-way function that 1s with such a function
f(x) that may be obtained if x is known, when the
calculation of inversion 1s the problem which 15 solved
difficultly (Fig. 1).

The public key cryptography uses one-way functions
with a secret. The secret may be presented by a private
key which helps to decrypt a message. That is there is
such an Y knowing that allows to calculate x if f{x) and Y
is known (Fig. 2).

The most commonly used cryptosystems with a
public key are based on modular arithmetic:

* The best known algorithm for public-key
cryptography is RSA (Menezes et al., 1996). The
basis of the cryptographic system 1s the problem
of two large prime numbers factoring. The
operation of exponentiation according to
large number module 13 used for encryption. One
has to decrypt Euler function within a reasonable
time from this large number which 15 necessary for
the knowing of a number decomposition into prime
factors

Y = f(X): easily

Domain Purpose

X ={'(Y): impossible (>polynomial of time)

Fig. 1: The domain to purpose mversion with polynomial
of time

f: easily

. e
\\\\\\\\\

f': casy with a secret t

Fig. 2: The domain to range inversion with a secret

()

¢ Diffie-Hellman, ElGamal and DSA algorithms are
based on a simple module exponentiation
» ECC may be implemented by sinple fields

Res. J. Applied Sci., 10 (8): 442-446, 2015

The most important operation is the multiplication by
module. A simple way of this operation performance is a
simple division:

(o
D{D

}XC
C

But this method is inefficient because it depends on
the module length:

AxBmodC=

1024 bits for RSA, Diffie-Hellman, ElGamal and DSA
algorithms

160 bit for the algorithms based on elliptic
cryptography

Another important operation 1s the calculation of the
following exponent: A® mod C. Typically it is calculated
using the fast exponentiation algorithm (Seong-Min et af.,
2013). It amounts to the multiplicative analogue of Horner
scheme. The algorithm helps to speed up the computation
by reducing the operations of exponentiation,
nevertheless the module calculation is performed via
division (Diffie and Hellman, 1976).

Algorithm: The fast exponentiation algorithm (square and
multiply alg.). Entry: a, b, n. Exit: a® mod n:

* Obtain a binary expansion b = (b;b,b,),, bie{0, 1}
C, =a, C,, = M Mult (M Mult (c,)) fori=0
Return Cy,,

Amount of multiplications m an algorithm: O(log, n).
MONTGOMERY REDUCTTON

The computation of the multiplication by module
using the computational strategy “multiplication-residue”
is used in the algorithm of fast exponentiation, involves
an efficient computation of module. Since, we want to
avold the accurate division which 1s very “expensive”
operation, the method 1s necessary that will help us to
avold it (Parhami, 1994). Montgomery proposed the
algorithm capable of multiplication performance
according to a certain module within the tume wlich
is almost equivalent to the multiplication of
mumbers with high precision. If n is the number of
digits 2 for multiplied mumbers, then the computational

several

443

complexity of Montgomery multiplication is as follows:
2n(n+ 1) = 2n’ + 2n single-precision multiplications, when
a multiplication precision requires n’.

Montgomery proposed an efficient algorithm for
computing a multiplication module. The idea is to move all
calculations from the ring 7, into a special residual
domain, the domain of Montgomery which will run all
operations.

Let N=0, we define the ring 7, = {0,1,2,..
define Montgomery transformation:

LN-1Y. We

W (Zy, + X) = (Zy, %)

Multiplication in Z, is performed faster, so if the
algorithm has a long chain of multiplications by module in
Zy, then the optimal strategy 1s to transit the Montgomery
7., domain operands, perform the multiplication within
it and convert the result back to 7, (Parhami, 1997;
Lim et al, 1997). If the original formula has also the
operations of addition, subtraction, we will fulfill them
between multiplications according to the rules in
Montgomery Z, domain and then bring the result back to
Zy (Montgomery, 1985).

Montgomery transformation: x the element of 7, positive
R=N:
NOD(R,N)=1=R xR~ Nx N’

where the coefficients R' and N' satisfy the following
relations:
R'=R 'modN,0<R'<N

N'= N 'modR,0 < N'<R

Montgomery transformation p is determined:

X=p(x)=xx RmodN
x=u" ()= xR'mod N

T.xk >N and R is mutually simple with N, then R = 2*
1s chosen as a rule (Barrett, 1986). In this case, the
division into R would mean a simple shift to the right by
k position which 1s performed very fast.

Further, all calculations are performed on the image.
In order to transit to a natural representation of x it 1s
necessary to divide by R.

Addition in montgomery domain: Tnitial elements x, ye7,,,
images %,5¢Z, .

Res. J. Applied Sci., 10 (8): 442-446, 2015

X+t y=xRmodN+yRmodN={x+ y)RmodN:(m)

Algorithm MRed(.); Montgomery reduction:
Entry: O=x<RN, N,R: >N, ged(R, N) =1 = RR'-NN'
Exit: xR™'mod N

t' = xN' mod R#1 modular multiplication mod R
x = x+Nt'#1 addition according to module R

x = x/R#Shift

If x=N then

x=xN

Back x

The algorithm is able to calculate xR~ mod N,
using 1 multiplication, 1 addition, 2R module calculations.
Using the algorithm MRed one may describe the
operation of two numbers multiplication in the domain

Z

Wo-

MMult(.,.) algorithm; Montgomery multiplication:
Entry: $=xR, §=yReZ,

Exit: Z=xyRmodN

Back: Z=MRed(Zx7§)

MMult returns the result from Montgomery domain:

3§ modN=(xR x yR)x R~ 'mod N=
xyR’R™ mod N=xymod N

The advantage of this approach 1s that MMult uses
1 multiplication together with 1 multiplication, 1 addition,
1 MRed algorithm shift which is considerably faster, than
the performance of regular reductions according to N
module. We may express pLand p™":

H:(ZN,+,X)4)(Z;’,+,*): F=p()=
xR mod N = MMult (x, R* modN)

p_‘:()—)(ZN,J@X)Z x=p (%)=
%R'mod N = MMult (%, 1)

VA

MExp algorithm (.,.); Montgomery exponent:
Entry: %=xR.e=(g;.e;.e,,....e,),

Exit: x* mod N

C, =%, C,, = M Mult (M Mult (¢,)) for 10
Return C,,

.....

The algorithm demands Z2log,N multiplications,
additions and shifts.

444

BARRETT REDUCTION

Barrett presented the algorithm that computes a
modular reduction which he used for the implementation
of RSA. At first glance, the modular reduction 1a just the
calculation an integer division remainder:

Z mod N = ZLEJ N=7- qN,q—LéJ
N N

The Barrett’s idea was that multiplication will be
used instead of division on a precomputed constant
which approximates the module inversion. Therefore, the
direct calculation of is avoided, 9 is calculated instead:

(2]Lv)

2n+1

This equation appears to be complicated
nevertheless the division by 2*' and 2"" is just a simple
shift. The equation | 2N | depends only on the module N
and is a constant one, until the module is not changed.
Thus, this constant may be calculated in advance. The
caleulation of the module will be reduced to two simple
multiplications and rounding operation. Tt turns out that
the result cannot be completely reduced, but it 1s in the
range from 0to 3N-1. Therefore, 1 or 2N reduction may be

necessary for an accurate result.
Barrett algorithm (Menezes ef al., 1996):

Input: x>0, m=0: Xx=(X,,_..... X, X,),
M= (I, _,..., I, Iy}, T, #0,

p:[bZk/m}, b=3

Output: r = x mod n

q, =[], 4 = g, a5 = [gb]

r, = xmod b*', 1, = g;*m mod b, r = '
If <0 then r = r+b*"!

While r>m: r=r-m

Retum (1)

BARRETT AND MONTGOMERY ALGORITHM

Similarities:

» A preliminary calculation of a number of constants

¢ The reduction avoids expensive division
operations

Res. J. Applied Sci., 10 (8): 442-446, 2015

Differences:
* Montgomery algorithm requires the transfer mto
Montgomery domain, the Barrett algorithm works
directly with mumbers. This allows Montgomery
algorithm to implement the exponentiation operation
effectively

Montgomery algorithm performs all operations with
high precision, Barrett’s algorithm is based on
approximation of a real value with a limited accuracy
Barrett’s algorithm is applied to the same module

during the calculation of multiple reductions
BASIC SEARCHMETHOD BY TABLE

As during the calculation of a number exponential the
module 1s fixed, you may use the table of precalculated
values. Given: n>0: 25'<n<2* Let's create a precomputed
Table 1:

r[l]sB},l—k,...,zk—l

Find: z mod nxz 1s composed of k bits, n 1s composed of
t bits lim (k/t) = 2. The table of precalculated values is
calculated:

n[j]=b*! mod n{o<j<k)

We compute:
2k-1 i
2=,V

b is a computer word size, so this formula is the expansion
of the number in the computation system b, here b= 2. Tt
1s equivalent to:

7=2[0k]+ 37, 0[j]

Thus, zmod n 18 k+1 1t 13 the least sigmficant digits of
the number within the calculation system b plus [log;k] of
precalculated values.

If we have a target value and 1t 15 multiplied by a
constant, the latter entered into the table of
precalculated values:

is

=
y=ex=> x;xcx b mod n

i-0

¢jl=ex b modn(0<j<k)

ko1
y="> % x¢[j modn

1=0

445

Table 1: The precomputer values
1 2k-1 2&k-2
1] 2% mod n 222 modn

k
2* mod n

Let’s consider the algorithm for fast exponentiation.
Thel 1s better to use for the calculation of a module after
finding a square, A 1s best of all to use for the obtaming
of the remainder after the multiplication by a constant. In
this case, we will have 2 tables of precalculated values.
Let’s define the basic algorithm?

Entry: n, k = BitLength(n), 0<z<2* T = {f{2k-1], r{2k-2]....,
r[k]}.

Exit: zmod N

If z<n, let’s return (z)

If BitLength(z) = k, then let’s retum (z-n)

s = Bmary(z), r = 0 for 1 from BitLength(z)-1 down to
kdoifs[i]=1,r=r+r[i]

=1+ j: s[j]2’

While r>n:r = r-n

While r<0:r = r+n

Let’s return (1)

The mumnber of additions m this method depends on
the nmumber of units in the left part of n number
decomposition. If it consists of 2k bits, the average
number of units in the left part is k/2. Since:

r[u{ﬂ,l—k,..., 2k 1

then |r|<kn/4. Thus [k/4] deduction 1s necessary for the
calculation of z mod n. Thus, the method demands [3k/4]
additions.

SUMMARY

The abovementioned algorithms at the correct use
may significantly reduce the computation time. The most
promising method is the search method by table and
Montgomery Method. Further immprovements of
Montgomery Method 1s associated with the search of a
new domain and a transformation operation. The search
method by the table depends on the efficiency of
preliminary computations, their possible transformations

and the search of the most effective number
decomposition as the sum.
CONCLUSION

Barrett Method 15 the best one for any reduction. It
1s much superior to other methods. At a fixed module,

Res. J. Applied Sci.

such as the calculation of the exponent the search method
according to the table shows the best results.
Montgomery Method is slightly worse.

IMPLEMENTATION

Implemented and tested on the computer with AMD
Phenom P820 processor Triple-Core 1.8 Ghz, 4GB RAM,
Windows 7x64, the library GNU GMP was used.

The calculation of arbitrary reduction for 30-50 bit
numbers. Because of the module variability it negates all
possible preliminary calculations (Bosselaers and
Vandewalle, 1993). The testing of reduction computation
speed makes 500 numbers (in seconds) (Fig. 3).

If we fix the module, we get a significant acceleration
of the Montgomery Calculation Method and the basic
search method on the table due to the fact that all the
operations of reduction calculation have been performed
already, only the operations of addition and multiplication

40-

—]

Montgomery Barrett Table

Arbitrary reduction

Fig. 3: The preliminary calculation

v @@/

Montgomery Barrett Table Classic
Reduction module

Fig. 4: The speed made reductions

10

Values

S 0 Bk N

Montgomery Table Classic
Reduction module

Fig. 5: The reduction according to the fixed module

, 10 (8): 442-446, 2015

remained basically (MacSorley, 1961). In view of the
low-level implementation of Montgomery Method in GMP
library, the classical approach was implemented manually.
The checking of calculation speed made 100,000
reductions (in seconds) (Fig. 4): The same diagram but
without Barrett reduction.

The calculation of a product or an exponent may also
be reduced to the calculation of reduction. Therefore, the
histogram of the exponent calculation at a fixed unit will
have a similar appearance (Fig. 5).

ACKNOWLEDGEMENT

The research is performed according to the Russian
Government Program of Competitive Growth of Kazan
Federal University.

REFERENCES

Barrett, P., 1986. Implementing the Rivest Shamir and
Adleman Public Key Encryption Algorithm on a
Standard Digital Signal Processor. Proceedings
CRYPTO, pp: 311-323,

Bosselaers, R G. and J. Vandewalle, 1993. Comparison of
Three Modular Reduction Functions. Proc. CRYPTO,
pp: 175-186.

Diffie, W. and ME. Hellman, 1976. New directions
m cryptography. IEEE Trans. Computers,
IT-22 (6): 644-654.

Lim, C., H Hwang and P. Lee, 1997. Fast modular
reduction with precomputation. In: Proc. of Korea
Japan Joint Workshop on Information Security and
Cryptology, pp: 65-79.

Menezes, A., P. van Qorschot and S. Vanstone, 1996.
Handbook of Applied Cryptography [Tent]. CRC
Press.

Montgomery, P.L., 1985. Modular Multiplication Without
Trial Division. Mathematics of Computation 44,
170: 519-521.

MacSorley, O.L., 1961. High-Speed Arithmetic in Binary
Computers. Proceedings of the Institute of Radio
Engineers, 49: 67-91.

Parhami, B., 1994, Analysis of tabular methods for
modular reduction. In: Proc. 28th Asilomar Conf.
Signals, Systems and Computers. Pacific Grove, CA,
pp: 526-530.

Parhami, B., 1997. Modular reduction by multi-level table
lookup. Tn: Proc. Midwest Symposium on Circuits
and Systems, MWSCAS, pp: 381-384.

Seong-Mm H., Sang-Yeop Oh and Hyunsoo Yoor, 2013.
New Modular Multiplication Algorithms for Fast
Modular Exponentiation. Department of Computer
Science and Center for AT Research.

446

	442-446_Page_1
	442-446_Page_2
	442-446_Page_3
	442-446_Page_4
	442-446_Page_5

